PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2358–o2359.
Published online 2009 September 5. doi:  10.1107/S1600536809034977
PMCID: PMC2970497

2-(3-Oxo-3,4-dihydro-2H-1,4-benzo­thia­zin-4-yl)acetic acid monohydrate

Abstract

In the title compound, C10H9NO3S·H2O, the thio­morpholine ring exists in a conformation inter­mediate between twist-boat and half-chair. An inter­molecular O—H(...)O hydrogen bond links the acid and water mol­ecules together. In the crystal packing, inter­molecular O—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For the biological activity of 4H-benzo(1,4)thia­zine, see: Armenise et al. (1991 [triangle]); Gupta et al. (1993 [triangle]); Fringuelli et al. (2005 [triangle]). For medical applications of sulfone derivatives of 4H-benzo(1,4)thia­zine, see: Shinji & Koshiro (1995 [triangle]); Szule et al. (1988 [triangle]); Culbertson (1991 [triangle]). For a related structure, see: Zhang et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2358-scheme1.jpg

Experimental

Crystal data

  • C10H9NO3S·H2O
  • M r = 241.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2358-efi1.jpg
  • a = 7.5897 (1) Å
  • b = 9.2208 (2) Å
  • c = 15.6701 (3) Å
  • β = 94.336 (1)°
  • V = 1093.50 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 100 K
  • 0.49 × 0.34 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.870, T max = 0.969
  • 25955 measured reflections
  • 4859 independent reflections
  • 3833 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.128
  • S = 0.83
  • 4859 reflections
  • 157 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034977/sj2641sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034977/sj2641Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). WSL thanks the Malaysian government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (No. 1001/PFIZIK/811012).

supplementary crystallographic information

Comment

A number of molecules containing the 4H-benzo(1,4)thiazine nucleus in their structures exhibit a broad spectrum of biological activity, including antibacterial (Armenise et al., 1991), anticancer (Gupta et al., 1993), anti-rheumatic, anti-allergic, vasorelaxant, anti-arrhythmic and anti-hypertensive (Fringuelli et al., 2005) properties. The sulfone derivatives of 4H-benzo(1,4)thiazine have been reported to find a number of applications in medicine (Shinji & Koshiro, 1995; Szule et al., 1988; Culbertson, 1991). On the basis of these considerations, our particular attention was paid to the preparation of derivatives of (3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetic acid and we report here the structure of the title 4-benzothiazine derivative.

The asymmetric unit of the title compound (Fig. 1), contains one (3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetic acid and one water molecule. The bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges. The thiomorpholine ring (C1/C6–C8/N1/S1) exists in a conformation intermediate between twist-boat and half-chair and it is comparable to a closely related structure (Zhang et al., 2008). The puckering parameters (Cremer & Pople, 1975) are Q = 0.6852 (9) Å; Θ = 112.69 (8)° and [var phi] = 152.79 (10)°. An intermolecular O1W1—H1W1···O1 hydrogen bond links the acid and water molecules together. In the crystal packing (Fig. 2), intermolecular O2—H1O2···O1W, O1W—H2W1···O3, C2—H2A···O1W and C9—H10A···O2 hydrogen bonds (Table 1) link the molecules into three-dimensional network.

Experimental

A solution of potassium hydroxide (5.85 mmol) in water (10 ml) was added to the solution of ethyl (3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetate (3.9 mmol) in ethanol (10 ml). The resulting reaction mixture was stirred at room temperature for 24 h and the reaction completion was checked by TLC. The reaction mixture was poured into water and acidified with 4 M HCl to form (3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetic acid as colourless solid. Single crystals suitable for X-ray analysis were obtained by crystallization from dichloromethane under slow evaporation (M.p. 338 K).

Refinement

Atom H1O2, H1W1 and H2W1 were located in a difference map and were refined freely. Other H atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The hydrogen bond is drawn as a dashed line.
Fig. 2.
The crystal packing of the title compound, viewed along b axis. Intermolecular hydrogen bonds are shown by dashed lines.

Crystal data

C10H9NO3S·H2OF(000) = 504
Mr = 241.26Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7672 reflections
a = 7.5897 (1) Åθ = 3.4–33.1°
b = 9.2208 (2) ŵ = 0.29 mm1
c = 15.6701 (3) ÅT = 100 K
β = 94.336 (1)°Block, colourless
V = 1093.50 (3) Å30.49 × 0.34 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4859 independent reflections
Radiation source: fine-focus sealed tube3833 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 35.1°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −12→12
Tmin = 0.870, Tmax = 0.969k = −14→13
25955 measured reflectionsl = −23→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 0.83w = 1/[σ2(Fo2) + (0.0915P)2 + 0.3956P] where P = (Fo2 + 2Fc2)/3
4859 reflections(Δ/σ)max = 0.001?
157 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.25290 (3)0.20298 (3)0.368735 (18)0.02391 (8)
O1W0.17478 (12)0.72939 (10)0.31220 (6)0.02515 (17)
O10.47141 (12)0.56427 (9)0.33767 (6)0.02699 (18)
O20.94362 (11)0.62615 (9)0.40417 (6)0.02360 (16)
O30.90204 (12)0.44113 (9)0.31220 (6)0.02548 (17)
C10.46033 (14)0.11958 (11)0.38793 (6)0.01900 (18)
C20.47444 (16)−0.03074 (12)0.39590 (7)0.0233 (2)
H2A0.3733−0.08790.39000.028*
C30.63845 (17)−0.09543 (12)0.41263 (7)0.0247 (2)
H3A0.6469−0.19550.41930.030*
C40.78984 (16)−0.01067 (12)0.41946 (7)0.0246 (2)
H4A0.8999−0.05440.42960.030*
C50.77815 (14)0.13934 (12)0.41127 (7)0.02197 (19)
H5A0.88010.19560.41560.026*
C60.61270 (13)0.20523 (11)0.39649 (6)0.01770 (17)
N10.59863 (11)0.35987 (9)0.39215 (6)0.01904 (16)
C70.46962 (14)0.43038 (12)0.34290 (7)0.02067 (19)
C80.32911 (14)0.33868 (13)0.29697 (7)0.0234 (2)
H8A0.37640.29180.24820.028*
H8B0.23090.39950.27600.028*
C90.73286 (14)0.45083 (11)0.43631 (7)0.02047 (18)
H9A0.79340.39590.48250.025*
H9B0.67640.53330.46130.025*
C100.86713 (13)0.50482 (11)0.37642 (7)0.01941 (18)
H1O21.028 (3)0.652 (3)0.3672 (15)0.064 (7)*
H2W10.155 (3)0.784 (2)0.2691 (15)0.056 (6)*
H1W10.270 (3)0.672 (2)0.3095 (13)0.043 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01398 (12)0.03081 (15)0.02713 (14)−0.00430 (9)0.00291 (9)0.00246 (9)
O1W0.0185 (4)0.0229 (4)0.0340 (4)0.0004 (3)0.0017 (3)0.0072 (3)
O10.0224 (4)0.0214 (4)0.0371 (5)0.0033 (3)0.0020 (3)0.0071 (3)
O20.0222 (4)0.0184 (3)0.0304 (4)−0.0051 (3)0.0030 (3)−0.0026 (3)
O30.0231 (4)0.0232 (4)0.0306 (4)−0.0046 (3)0.0049 (3)−0.0046 (3)
C10.0179 (4)0.0209 (4)0.0184 (4)−0.0039 (3)0.0028 (3)−0.0002 (3)
C20.0279 (5)0.0217 (5)0.0208 (4)−0.0064 (4)0.0046 (4)−0.0016 (3)
C30.0358 (6)0.0175 (4)0.0211 (4)−0.0004 (4)0.0050 (4)−0.0006 (3)
C40.0264 (5)0.0226 (5)0.0251 (5)0.0052 (4)0.0030 (4)0.0020 (4)
C50.0169 (4)0.0206 (4)0.0284 (5)0.0016 (3)0.0019 (3)0.0028 (4)
C60.0162 (4)0.0169 (4)0.0201 (4)−0.0009 (3)0.0022 (3)0.0013 (3)
N10.0136 (3)0.0176 (4)0.0256 (4)−0.0004 (3)−0.0006 (3)0.0029 (3)
C70.0150 (4)0.0233 (5)0.0239 (4)0.0020 (3)0.0027 (3)0.0048 (3)
C80.0169 (4)0.0296 (5)0.0233 (5)−0.0003 (4)−0.0008 (3)0.0047 (4)
C90.0172 (4)0.0196 (4)0.0243 (4)−0.0020 (3)−0.0001 (3)0.0002 (3)
C100.0147 (4)0.0169 (4)0.0262 (5)0.0000 (3)−0.0009 (3)0.0000 (3)

Geometric parameters (Å, °)

S1—C11.7575 (11)C4—C51.3914 (16)
S1—C81.8064 (12)C4—H4A0.9300
O1W—H2W10.85 (2)C5—C61.3984 (15)
O1W—H1W10.90 (2)C5—H5A0.9300
O1—C71.2374 (13)C6—N11.4311 (13)
O2—C101.3189 (13)N1—C71.3648 (13)
O2—H1O20.93 (3)N1—C91.4539 (13)
O3—C101.2116 (14)C7—C81.5014 (16)
C1—C21.3951 (15)C8—H8A0.9700
C1—C61.3985 (14)C8—H8B0.9700
C2—C31.3873 (17)C9—C101.5205 (16)
C2—H2A0.9300C9—H9A0.9700
C3—C41.3871 (17)C9—H9B0.9700
C3—H3A0.9300
C1—S1—C894.86 (5)C7—N1—C6123.32 (9)
H2W1—O1W—H1W1114 (2)C7—N1—C9116.19 (8)
C10—O2—H1O2108.8 (14)C6—N1—C9120.33 (8)
C2—C1—C6119.68 (10)O1—C7—N1120.11 (10)
C2—C1—S1120.78 (8)O1—C7—C8122.76 (10)
C6—C1—S1119.53 (8)N1—C7—C8117.12 (9)
C3—C2—C1120.38 (10)C7—C8—S1109.94 (7)
C3—C2—H2A119.8C7—C8—H8A109.7
C1—C2—H2A119.8S1—C8—H8A109.7
C4—C3—C2119.90 (10)C7—C8—H8B109.7
C4—C3—H3A120.0S1—C8—H8B109.7
C2—C3—H3A120.0H8A—C8—H8B108.2
C3—C4—C5120.42 (11)N1—C9—C10111.92 (9)
C3—C4—H4A119.8N1—C9—H9A109.2
C5—C4—H4A119.8C10—C9—H9A109.2
C4—C5—C6119.83 (10)N1—C9—H9B109.2
C4—C5—H5A120.1C10—C9—H9B109.2
C6—C5—H5A120.1H9A—C9—H9B107.9
C1—C6—C5119.75 (9)O3—C10—O2124.51 (10)
C1—C6—N1119.99 (9)O3—C10—C9123.56 (9)
C5—C6—N1120.24 (9)O2—C10—C9111.90 (9)
C8—S1—C1—C2−142.00 (9)C5—C6—N1—C7149.31 (11)
C8—S1—C1—C638.91 (9)C1—C6—N1—C9152.60 (10)
C6—C1—C2—C30.30 (16)C5—C6—N1—C9−25.91 (14)
S1—C1—C2—C3−178.80 (8)C6—N1—C7—O1−175.33 (10)
C1—C2—C3—C4−1.55 (16)C9—N1—C7—O10.07 (15)
C2—C3—C4—C51.24 (17)C6—N1—C7—C84.85 (15)
C3—C4—C5—C60.33 (17)C9—N1—C7—C8−179.75 (9)
C2—C1—C6—C51.27 (15)O1—C7—C8—S1−134.43 (10)
S1—C1—C6—C5−179.63 (8)N1—C7—C8—S145.39 (12)
C2—C1—C6—N1−177.25 (9)C1—S1—C8—C7−60.65 (8)
S1—C1—C6—N11.86 (13)C7—N1—C9—C10−77.23 (12)
C4—C5—C6—C1−1.58 (16)C6—N1—C9—C1098.32 (11)
C4—C5—C6—N1176.93 (10)N1—C9—C10—O3−26.48 (14)
C1—C6—N1—C7−32.18 (15)N1—C9—C10—O2155.33 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1Wi0.93 (2)1.62 (2)2.5384 (13)168 (3)
O1W—H2W1···O3ii0.85 (2)1.96 (2)2.7893 (13)168 (2)
O1W—H1W1···O10.90 (2)1.85 (2)2.7221 (13)163.4 (19)
C2—H2A···O1Wiii0.932.513.3666 (15)153
C9—H9A···O2iv0.972.583.4429 (14)149

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x, y−1, z; (iv) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2641).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Armenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Farmaco.46, 1023–1032. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Culbertson, T. P. (1991). J. Heterocycl. Chem.28, 1701–1708.
  • Fringuelli, R., Milanese, L. & Schiaffella, F. (2005). Mini-Rev. Med. Chem.5, 1061–1073(13). [PubMed]
  • Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anti-Ca. Drugs.4, 589–592. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shinji, S. & Koshiro, A. (1995). Biol. Pharm. Bull.18, 586–594. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Szule, Z., Mlochow, J. & Palus, J. (1988). J. Prakt. Chem.330, 1023–1028.
  • Zhang, P., Du, N., Wang, L.-Z. & Li, Y. (2008). Acta Cryst. E64, o746. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography