PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1236.
Published online 2009 September 19. doi:  10.1107/S160053680903726X
PMCID: PMC2970494

[N′-(3-Meth­oxy-2-oxidobenzyl­idene)nicotinohydrazidato]dimethyl­tin(IV)

Abstract

In the title complex, [Sn(CH3)2(C14H11N3O3)], the Sn atom is in a distorted trigonal-bipyramidal coordination, with Sn—O distances of 2.138 (2) and 2.176 (2) Å. The dihedral angles between the two chelated benzene rings and the O—Sn—N group are 71.73 (9) and 83.30 (9)°.

Related literature

For covalent radii, see: Sanderson (1967 [triangle]). For bond-lengh data, see: Yang et al. (1999 [triangle]). For a related structure, see: Yearwood et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1236-scheme1.jpg

Experimental

Crystal data

  • [Sn(CH3)2(C14H11N3O3)]
  • M r = 418.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1236-efi1.jpg
  • a = 26.121 (8) Å
  • b = 9.795 (3) Å
  • c = 13.227 (4) Å
  • β = 103.666 (4)°
  • V = 3288.4 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.57 mm−1
  • T = 298 K
  • 0.35 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.609, T max = 0.834
  • 9367 measured reflections
  • 3574 independent reflections
  • 3115 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.087
  • S = 1.00
  • 3574 reflections
  • 211 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680903726X/kp2231sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903726X/kp2231Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the financial support of the Jining University Science Foundation and the State Key Laboratory of Crystal Materials, Shandong University.

supplementary crystallographic information

Comment

In the structure of the title compound, (I), (Fig. 1) the Sn1 atom is in a distored trigonal-bipyramidal coordination formed by a tridentate ligand of the azomethine N atom, the hydroxyl O atom and the carbonyl O atom (Table 1). The dihedral angles between the two chelated benzene rings: O2—Sn1—N2 and O3—Sn1—N2 are 83.30 (9) and 71.73 (9)°, respectively. The Sn atom is coordinated in distorted trigonal-bipyramidal arrangement with O2 and O3 located in the axial positions [O2—Sn1—O3 = 155.02 (9)°] and the C15, C16 and N2 in the equatorial positions. The sum of the C15—Sn1—C16 [146.08 (14)], C15—Sn1—N2 [106.13 (11)] and C16—Sn1—N2 [107.23 (11)°] bond angles is 359.44°, indicating approximate co-planarity for these atoms. Comparing the length of CN 1.270Å and C—N 1.470 Å, both bonds, C8—N2 (1.287 (4) Å) and C9—N1 (1.304 (4) Å) should be CN. The N1—N2 bond (1.400 (3) Å) is a single-bond (Yang et al., 1999). The Sn1—N2 distance is close to the sum of the covalent radii of 2.15Å (Sanderson, 1967), indicating a strong Sn—N interaction. Very similar structural parameters were observed in the compound studied by Yearwood et al. (2002).

Experimental

A mixture of dimethyltin oxide (0.3295 g, 2.0 mmol) and 3-methoxy-2-oxideobenzaldehyde(3-pyridyl)methyl-hydrazone (0.5420 g, 2.0 mmol) in methanol (50 ml) was heated under reflux for 6 h. The obtained clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/ethanol (1:1) to yield blocks of (I). Yield 0.5936 g, 71%, m.p. 453 K, analysis, calculated for C16H17N3O3Sn: C 45.97, H, 4.10; N 10.06%; found: C 46.02, H 4.05, N, 10.09%.

Refinement

H atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic H atomds and 0.96 Å for methyl H atoms and were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(for methyl groups).

Figures

Fig. 1.
The molecular structure of the title complex with 30% displacement ellipsoids (H atoms omitted for clarity).

Crystal data

[Sn(CH3)2(C14H11N3O3)]F(000) = 1664
Mr = 418.02Dx = 1.689 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4244 reflections
a = 26.121 (8) Åθ = 2.2–27.6°
b = 9.795 (3) ŵ = 1.57 mm1
c = 13.227 (4) ÅT = 298 K
β = 103.666 (4)°Block, yellow
V = 3288.4 (17) Å30.35 × 0.16 × 0.12 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer3574 independent reflections
Radiation source: fine-focus sealed tube3115 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −33→20
Tmin = 0.609, Tmax = 0.834k = −12→12
9367 measured reflectionsl = −13→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0558P)2 + 0.5213P] where P = (Fo2 + 2Fc2)/3
3574 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.17768 (17)−0.0742 (5)−0.0099 (5)0.112 (2)
H1A−0.1913−0.06220.05090.169*
H1B−0.1729−0.1697−0.02080.169*
H1C−0.2021−0.0368−0.06930.169*
C2−0.12735 (12)0.1271 (3)0.0369 (2)0.0486 (7)
C3−0.17073 (12)0.1957 (3)0.0522 (3)0.0543 (8)
H3−0.20310.15150.03910.065*
C4−0.16700 (14)0.3308 (3)0.0870 (3)0.0598 (9)
H4−0.19660.37610.09730.072*
C5−0.11962 (12)0.3952 (3)0.1057 (3)0.0530 (7)
H5−0.11710.48520.12860.064*
C6−0.07437 (12)0.3282 (3)0.0910 (2)0.0450 (7)
C7−0.07714 (12)0.1931 (3)0.0542 (2)0.0441 (7)
C8−0.02708 (12)0.4074 (3)0.1159 (2)0.0461 (6)
H8−0.03010.49440.14210.055*
C90.10299 (11)0.4315 (3)0.1225 (2)0.0453 (7)
C100.14890 (11)0.5246 (3)0.1563 (2)0.0458 (7)
C110.14558 (15)0.6528 (3)0.1969 (3)0.0579 (8)
H110.11330.68720.20320.069*
C120.19100 (16)0.7297 (4)0.2282 (3)0.0701 (10)
H120.18980.81720.25490.084*
C130.23784 (17)0.6734 (4)0.2190 (3)0.0701 (11)
H130.26830.72510.24160.084*
C140.19835 (12)0.4796 (3)0.1490 (3)0.0563 (8)
H140.20060.39380.12020.068*
C150.07460 (13)0.0606 (3)0.1813 (2)0.0564 (8)
H15A0.0728−0.03420.16250.085*
H15B0.05440.07600.23230.085*
H15C0.11060.08580.20990.085*
C160.03460 (15)0.1988 (3)−0.1120 (3)0.0562 (8)
H16A0.06490.2438−0.12580.084*
H16B0.00360.2518−0.14050.084*
H16C0.03100.1100−0.14350.084*
N10.05804 (9)0.4727 (2)0.1381 (2)0.0477 (6)
N20.01913 (9)0.3731 (3)0.10640 (18)0.0445 (5)
N30.24269 (11)0.5509 (3)0.1802 (3)0.0683 (8)
O1−0.12845 (9)−0.0056 (3)0.0043 (2)0.0690 (7)
O2−0.03632 (8)0.1225 (2)0.03858 (18)0.0546 (5)
O30.11123 (10)0.3162 (2)0.0820 (2)0.0604 (6)
Sn10.043848 (7)0.17888 (2)0.049245 (14)0.04388 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.066 (3)0.083 (3)0.202 (6)−0.031 (2)0.060 (3)−0.070 (3)
C20.0429 (16)0.0581 (18)0.0459 (16)−0.0086 (14)0.0129 (12)−0.0022 (14)
C30.0378 (16)0.072 (2)0.0542 (19)−0.0055 (14)0.0135 (14)0.0008 (15)
C40.0459 (18)0.069 (2)0.069 (2)0.0046 (15)0.0219 (16)−0.0008 (16)
C50.0518 (18)0.0535 (18)0.0568 (19)0.0003 (14)0.0190 (14)0.0026 (15)
C60.0419 (16)0.0540 (17)0.0397 (15)−0.0042 (12)0.0107 (12)0.0063 (12)
C70.0394 (15)0.0581 (18)0.0354 (14)−0.0030 (12)0.0103 (11)0.0039 (12)
C80.0472 (17)0.0458 (15)0.0459 (16)−0.0028 (13)0.0120 (12)0.0027 (13)
C90.0451 (16)0.0492 (16)0.0418 (15)−0.0110 (13)0.0104 (12)0.0012 (13)
C100.0479 (16)0.0466 (16)0.0421 (15)−0.0124 (13)0.0091 (12)0.0037 (13)
C110.061 (2)0.0536 (18)0.061 (2)−0.0123 (15)0.0173 (16)−0.0053 (15)
C120.082 (3)0.0534 (19)0.076 (3)−0.023 (2)0.022 (2)−0.0120 (19)
C130.057 (2)0.079 (3)0.071 (3)−0.0297 (18)0.0076 (18)−0.0001 (19)
C140.0514 (18)0.0535 (18)0.062 (2)−0.0115 (15)0.0101 (15)−0.0008 (16)
C150.060 (2)0.061 (2)0.0445 (17)−0.0025 (15)0.0053 (14)0.0008 (14)
C160.075 (2)0.0510 (18)0.0452 (18)−0.0102 (16)0.0203 (16)−0.0036 (14)
N10.0450 (14)0.0442 (13)0.0535 (15)−0.0077 (11)0.0107 (11)−0.0006 (11)
N20.0445 (14)0.0462 (13)0.0426 (13)−0.0091 (11)0.0100 (10)−0.0005 (11)
N30.0507 (17)0.0673 (19)0.085 (2)−0.0174 (14)0.0116 (14)−0.0038 (16)
O10.0457 (12)0.0708 (15)0.0958 (19)−0.0155 (11)0.0277 (12)−0.0276 (14)
O20.0400 (11)0.0565 (13)0.0689 (15)−0.0080 (10)0.0162 (10)−0.0079 (11)
O30.0509 (14)0.0569 (14)0.0793 (18)−0.0155 (10)0.0269 (12)−0.0220 (11)
Sn10.04134 (14)0.04977 (15)0.04093 (14)−0.01097 (8)0.01049 (9)−0.00053 (8)

Geometric parameters (Å, °)

C1—O11.423 (4)C10—C141.390 (4)
C1—H1A0.9600C11—C121.383 (5)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C131.374 (6)
C2—O11.367 (4)C12—H120.9300
C2—C31.373 (5)C13—N31.323 (5)
C2—C71.431 (4)C13—H130.9300
C3—C41.397 (4)C14—N31.332 (4)
C3—H30.9300C14—H140.9300
C4—C51.359 (5)C15—Sn12.092 (3)
C4—H40.9300C15—H15A0.9600
C5—C61.405 (4)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.406 (4)C16—Sn12.098 (3)
C6—C81.430 (4)C16—H16A0.9600
C7—O21.327 (4)C16—H16B0.9600
C8—N21.287 (4)C16—H16C0.9600
C8—H80.9300N1—N21.400 (3)
C9—O31.290 (3)N2—Sn12.200 (3)
C9—N11.304 (4)O2—Sn12.138 (2)
C9—C101.489 (4)O3—Sn12.176 (2)
C10—C111.377 (4)
O1—C1—H1A109.5C11—C12—H12120.8
O1—C1—H1B109.5N3—C13—C12124.6 (3)
H1A—C1—H1B109.5N3—C13—H13117.7
O1—C1—H1C109.5C12—C13—H13117.7
H1A—C1—H1C109.5N3—C14—C10124.5 (3)
H1B—C1—H1C109.5N3—C14—H14117.7
O1—C2—C3123.7 (3)C10—C14—H14117.7
O1—C2—C7115.5 (3)Sn1—C15—H15A109.5
C3—C2—C7120.8 (3)Sn1—C15—H15B109.5
C2—C3—C4121.1 (3)H15A—C15—H15B109.5
C2—C3—H3119.4Sn1—C15—H15C109.5
C4—C3—H3119.4H15A—C15—H15C109.5
C5—C4—C3119.3 (3)H15B—C15—H15C109.5
C5—C4—H4120.4Sn1—C16—H16A109.5
C3—C4—H4120.4Sn1—C16—H16B109.5
C4—C5—C6121.2 (3)H16A—C16—H16B109.5
C4—C5—H5119.4Sn1—C16—H16C109.5
C6—C5—H5119.4H16A—C16—H16C109.5
C5—C6—C7120.8 (3)H16B—C16—H16C109.5
C5—C6—C8115.1 (3)C9—N1—N2110.7 (2)
C7—C6—C8124.2 (3)C8—N2—N1114.8 (2)
O2—C7—C6124.5 (3)C8—N2—Sn1128.1 (2)
O2—C7—C2118.7 (3)N1—N2—Sn1117.03 (18)
C6—C7—C2116.8 (3)C13—N3—C14116.1 (3)
N2—C8—C6127.9 (3)C2—O1—C1116.2 (3)
N2—C8—H8116.0C7—O2—Sn1131.74 (19)
C6—C8—H8116.0C9—O3—Sn1114.66 (19)
O3—C9—N1125.6 (3)C15—Sn1—C16146.08 (14)
O3—C9—C10117.4 (3)C15—Sn1—O295.11 (11)
N1—C9—C10117.0 (3)C16—Sn1—O294.66 (12)
C11—C10—C14117.5 (3)C15—Sn1—O392.46 (12)
C11—C10—C9123.8 (3)C16—Sn1—O392.19 (12)
C14—C10—C9118.7 (3)O2—Sn1—O3155.02 (9)
C10—C11—C12119.0 (4)C15—Sn1—N2106.13 (11)
C10—C11—H11120.5C16—Sn1—N2107.23 (11)
C12—C11—H11120.5O2—Sn1—N283.30 (9)
C13—C12—C11118.3 (4)O3—Sn1—N271.73 (9)
C13—C12—H12120.8
O1—C2—C3—C4179.1 (3)C6—C8—N2—N1−179.5 (3)
C7—C2—C3—C4−1.4 (5)C6—C8—N2—Sn1−0.4 (4)
C2—C3—C4—C50.2 (5)C9—N1—N2—C8−177.8 (3)
C3—C4—C5—C6−0.3 (5)C9—N1—N2—Sn13.0 (3)
C4—C5—C6—C71.5 (5)C12—C13—N3—C14−0.2 (6)
C4—C5—C6—C8−178.7 (3)C10—C14—N3—C13−1.2 (5)
C5—C6—C7—O2−179.7 (3)C3—C2—O1—C1−2.4 (5)
C8—C6—C7—O20.5 (5)C7—C2—O1—C1178.0 (4)
C5—C6—C7—C2−2.5 (4)C6—C7—O2—Sn1−5.1 (4)
C8—C6—C7—C2177.7 (3)C2—C7—O2—Sn1177.7 (2)
O1—C2—C7—O2−0.5 (4)N1—C9—O3—Sn1−4.5 (4)
C3—C2—C7—O2179.9 (3)C10—C9—O3—Sn1174.16 (19)
O1—C2—C7—C6−177.9 (3)C7—O2—Sn1—C15110.8 (3)
C3—C2—C7—C62.4 (4)C7—O2—Sn1—C16−101.7 (3)
C5—C6—C8—N2−177.5 (3)C7—O2—Sn1—O33.7 (4)
C7—C6—C8—N22.3 (5)C7—O2—Sn1—N25.1 (3)
O3—C9—C10—C11177.3 (3)C9—O3—Sn1—C15−102.0 (2)
N1—C9—C10—C11−3.9 (4)C9—O3—Sn1—C16111.6 (2)
O3—C9—C10—C14−4.0 (4)C9—O3—Sn1—O25.6 (4)
N1—C9—C10—C14174.7 (3)C9—O3—Sn1—N24.2 (2)
C14—C10—C11—C12−0.1 (5)C8—N2—Sn1—C15−95.7 (3)
C9—C10—C11—C12178.5 (3)N1—N2—Sn1—C1583.4 (2)
C10—C11—C12—C13−1.1 (6)C8—N2—Sn1—C1690.5 (3)
C11—C12—C13—N31.3 (6)N1—N2—Sn1—C16−90.4 (2)
C11—C10—C14—N31.3 (5)C8—N2—Sn1—O2−2.3 (2)
C9—C10—C14—N3−177.4 (3)N1—N2—Sn1—O2176.8 (2)
O3—C9—N1—N21.0 (4)C8—N2—Sn1—O3177.0 (3)
C10—C9—N1—N2−177.6 (2)N1—N2—Sn1—O3−3.86 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2231).

References

  • Sanderson, R. T. (1967). Inorganic Chemistry, p. 74. New York: Reinhold.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yang, Z. Y., Yang, R. D. & Yu, K. B. (1999). Acta Chim. Sin.57, 236–243.
  • Yearwood, B., Parkin, C. H. & Atwood, D. A. (2002). Inorg. Chim. Acta, 333, 124–131.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography