PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1211.
Published online 2009 September 12. doi:  10.1107/S1600536809036332
PMCID: PMC2970489

Poly[di-μ-thiocyanato-κ2 N:S2 S:N-bis­[2-(1H-1,2,3-triazol-1-yl-κN 3)pyra­zine]cadmium(II)]

Abstract

In the title two-dimensional coordination polymer, [Cd(NCS)2(C6H5N5)2]n, the CdII ion (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-m1211-efi11.jpg) is coordinated by two N atoms from two 2-(1H-1,2,3-triazol-1-yl)pyrazine ligands and two N and two S atoms from four thio­cyanate anions. The N—Cd bond lengths range from 2.323 (2) to 2.3655 (19) Å and the S—Cd bond length is 2.7117 (7) Å. The associated cisoid angles vary from 84.99 (7) to 95.01 (7)°, indicating that the CdII ion assumes a distorted octa­hedral geometry. In the complex, each thio­cyanate anion functions as a bridging ligand, linking adjacent CdII ions with a separation of 6.4919 (6) Å, resulting in the formation of a two-dimensional sheet structure in the bc plane.

Related literature

For a related crystal structure, see: Yang & Shi (2008 [triangle]). For the synthesis of CdII complexes with thio­cyanate anions and pyrazine derivatives as mixed bridging ligands, see: Li et al. (2008 [triangle]); Shi et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1211-scheme1.jpg

Experimental

Crystal data

  • [Cd(NCS)2(C6H5N5)2]
  • M r = 522.86
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1211-efi12.jpg
  • a = 12.5038 (15) Å
  • b = 10.7240 (13) Å
  • c = 7.3196 (9) Å
  • β = 106.476 (2)°
  • V = 941.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.41 mm−1
  • T = 298 K
  • 0.24 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.728, T max = 0.806
  • 5139 measured reflections
  • 1923 independent reflections
  • 1735 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.064
  • S = 1.03
  • 1923 reflections
  • 133 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond angless (°)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036332/bv2122sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036332/bv2122Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2-(1H-1,2,3-triazol-1-yl)pyrazine is similar to 2-(pyrazol-1-yl)pyrazine (Yang & Shi 2008) in structure and therefore it should act as a bridging ligand. Our interest in synthesizing CdII complexes (Shi et al., 2007; Li et al., 2008) with thiocyanate anions and derivatives of pyrazine as mixed bridging ligands resulted in us selecting thiocyanato and 2-(1H-1,2,3-triazol-1-yl)pyrazine as ligands, but only the title complex was obtained, in which 2-(1H-1,2,3-triazol-1-yl)pyrazine only functions as a terminal ligand. Herein we report the crystal structure of the title complex.

The asymmetric unit and symmetry-related fragments of (I) are shown in Fig. 1, and Fig.1 and Table 1 reveal that Cd1 atom is in a distorted octahedral CdN4S2 coordination geometry. In the crystal each CdII ion is surrounded by four other symmetry-related CdII ions with separation with 6.4919 (6) Å and the adjacent CdII ions were bridged by one thiocyanato anions and it forms a two-dimensional sheet on bc plane as shown in Fig. 2. 2-(1H-1,2,3-triazol-1-yl)pyrazine only acts as a monodentate ligand.

Experimental

An 8 ml methanol solution of 2-(1H-1,2,3-triazol-1-yl)pyrazine (0.0401 g, 0.272 mmol), 5 ml water solution of Cd(ClO4)2.6H2O (0.1120 g, 0.267 mmol) and 5 ml water solution of NaSCN (0.0435 g, 0.537 mmol) were mixed together and stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for ten days.

Refinement

All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The coordination structure of (I) showing the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x, y - 1/2, -z + 1/2 (ii) -x, -y + 2, -z (iii) x, -y + 5/2, z - 1/2 (iv) -x, y + 1/2, -z - 1/2 (v) -x, ...
Fig. 2.
Unit cell and the part of the two-dimensional sheet on bc plane.

Crystal data

[Cd(NCS)2(C6H5N5)2]F(000) = 516
Mr = 522.86Dx = 1.845 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3160 reflections
a = 12.5038 (15) Åθ = 2.6–28.0°
b = 10.7240 (13) ŵ = 1.41 mm1
c = 7.3196 (9) ÅT = 298 K
β = 106.476 (2)°Block, colorless
V = 941.2 (2) Å30.24 × 0.18 × 0.16 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer1923 independent reflections
Radiation source: fine-focus sealed tube1735 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.728, Tmax = 0.806k = −13→12
5139 measured reflectionsl = −6→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0289P)2 + 0.6077P] where P = (Fo2 + 2Fc2)/3
1923 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1593 (2)0.7435 (2)0.0075 (4)0.0390 (6)
H10.09800.6904−0.02250.047*
C20.2671 (2)0.7082 (2)0.0439 (4)0.0405 (6)
H20.29510.62780.04410.049*
C30.44202 (19)0.8353 (2)0.1282 (3)0.0348 (5)
C40.6101 (2)0.7616 (3)0.1322 (4)0.0521 (7)
H40.65550.69870.10830.063*
C50.6582 (2)0.8710 (3)0.2116 (4)0.0530 (7)
H50.73470.88170.23500.064*
C60.4896 (2)0.9434 (3)0.2156 (5)0.0506 (7)
H60.44461.00410.24680.061*
C70.08801 (19)1.2249 (2)0.3671 (3)0.0331 (5)
Cd10.00001.00000.00000.03129 (10)
N10.15559 (16)0.86932 (18)0.0222 (3)0.0370 (5)
N20.25664 (17)0.91457 (18)0.0669 (3)0.0393 (5)
N30.32500 (16)0.81662 (17)0.0798 (3)0.0336 (4)
N40.50015 (18)0.7423 (2)0.0879 (4)0.0464 (5)
N50.5982 (2)0.9623 (3)0.2560 (5)0.0615 (7)
N60.07295 (19)1.32994 (19)0.3793 (3)0.0452 (5)
S10.11190 (7)1.07527 (6)0.35667 (11)0.0530 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0328 (13)0.0276 (11)0.0548 (16)0.0003 (9)0.0097 (11)−0.0064 (11)
C20.0363 (13)0.0268 (11)0.0566 (16)0.0025 (10)0.0104 (12)−0.0060 (11)
C30.0333 (12)0.0363 (12)0.0350 (12)0.0027 (10)0.0098 (10)−0.0011 (10)
C40.0379 (15)0.0618 (18)0.0593 (19)0.0058 (13)0.0181 (13)−0.0065 (15)
C50.0335 (14)0.0681 (19)0.0564 (18)−0.0022 (13)0.0113 (13)0.0008 (15)
C60.0370 (14)0.0413 (15)0.070 (2)0.0015 (12)0.0094 (13)−0.0099 (14)
C70.0310 (12)0.0315 (12)0.0370 (13)−0.0020 (9)0.0097 (10)−0.0056 (10)
Cd10.02776 (14)0.01935 (13)0.04655 (17)0.00164 (8)0.01019 (11)0.00206 (9)
N10.0321 (10)0.0283 (10)0.0496 (13)0.0032 (8)0.0098 (9)−0.0009 (9)
N20.0340 (11)0.0265 (10)0.0578 (14)0.0039 (8)0.0134 (10)−0.0011 (9)
N30.0311 (10)0.0274 (9)0.0415 (11)0.0041 (8)0.0087 (8)−0.0024 (8)
N40.0379 (12)0.0450 (12)0.0575 (15)0.0042 (10)0.0157 (10)−0.0089 (11)
N50.0397 (14)0.0541 (14)0.085 (2)−0.0095 (12)0.0082 (13)−0.0145 (15)
N60.0462 (13)0.0323 (11)0.0571 (14)0.0036 (9)0.0145 (11)−0.0081 (10)
S10.0712 (5)0.0266 (3)0.0485 (4)0.0086 (3)−0.0037 (3)−0.0046 (3)

Geometric parameters (Å, °)

C1—C21.352 (3)C6—N51.322 (4)
C1—N11.355 (3)C6—H60.9300
C1—H10.9300C7—N61.150 (3)
C2—N31.356 (3)C7—S11.638 (2)
C2—H20.9300Cd1—N6i2.323 (2)
C3—N41.316 (3)Cd1—N6ii2.323 (2)
C3—C61.375 (4)Cd1—N12.3655 (19)
C3—N31.419 (3)Cd1—N1iii2.3655 (19)
C4—N41.336 (4)Cd1—S1iii2.7117 (7)
C4—C51.370 (4)Cd1—S12.7117 (7)
C4—H40.9300N1—N21.306 (3)
C5—N51.328 (4)N2—N31.341 (3)
C5—H50.9300N6—Cd1iv2.323 (2)
C2—C1—N1108.6 (2)N6ii—Cd1—N1iii84.99 (7)
C2—C1—H1125.7N1—Cd1—N1iii180.0
N1—C1—H1125.7N6i—Cd1—S1iii88.93 (6)
C1—C2—N3104.2 (2)N6ii—Cd1—S1iii91.07 (6)
C1—C2—H2127.9N1—Cd1—S1iii94.56 (5)
N3—C2—H2127.9N1iii—Cd1—S1iii85.44 (5)
N4—C3—C6123.3 (2)N6i—Cd1—S191.07 (6)
N4—C3—N3115.7 (2)N6ii—Cd1—S188.93 (6)
C6—C3—N3121.0 (2)N1—Cd1—S185.44 (5)
N4—C4—C5122.2 (3)N1iii—Cd1—S194.56 (5)
N4—C4—H4118.9S1iii—Cd1—S1180.0
C5—C4—H4118.9N2—N1—C1109.69 (19)
N5—C5—C4121.6 (3)N2—N1—Cd1121.04 (14)
N5—C5—H5119.2C1—N1—Cd1129.10 (16)
C4—C5—H5119.2N1—N2—N3106.19 (18)
N5—C6—C3121.0 (3)N2—N3—C2111.33 (19)
N5—C6—H6119.5N2—N3—C3119.93 (19)
C3—C6—H6119.5C2—N3—C3128.7 (2)
N6—C7—S1178.2 (3)C3—N4—C4115.1 (2)
N6i—Cd1—N6ii180.0C6—N5—C5116.6 (3)
N6i—Cd1—N184.99 (7)C7—N6—Cd1iv152.8 (2)
N6ii—Cd1—N195.01 (7)C7—S1—Cd1106.59 (9)
N6i—Cd1—N1iii95.01 (7)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+5/2, z−1/2; (iii) −x, −y+2, −z; (iv) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2122).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, H., Xu, H. Y., Zhang, S. G. & Shi, J. M. (2008). J. Coord. Chem.61, 2807–2813.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, J. M., Zhang, X., Xu, H. Y., Wu, C. J. & Liu, L. D. (2007). J. Coord. Chem.60, 647–654.
  • Yang, L. Y. & Shi, J. M. (2008). Acta Cryst. E64, m1387. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography