PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1207.
Published online 2009 September 12. doi:  10.1107/S1600536809035910
PMCID: PMC2970486

Tetra­aqua­(2,2′-bipyridine-5,5′-dicarboxyl­ato-κ2 N,N′)nickel(II) dihydrate

Abstract

In the title compound, [Ni(C12H6N2O4)(H2O)4]·2H2O, obtained from a basic solution of 2,2′-bipyridine-5,5′-dicarboxyl­ate and nickel(II) chloride in water, the central Ni(II) cation (site symmetry 2) is coordinated by two N atoms from the 2,2′-bipyridine-5,5′-dicarboxyl­ate ligand and four aqua O atoms. The N—Ni—N angle is 78.64 (8)°. Weak but significant π–π stacking inter­actions exist between the pyridine rings with a centroid–centroid distance of 3.652 (8) Å. In addition, four O atoms of the two carboxyl groups form hydrogen bonds with both coordinated and uncoordinated water mol­ecules, forming an infinite three-dimensional network.

Related literature

For attempts to synthesize 5,5′- and 6,6′-substituted 2,2′-bipyridine derivatives, see: He et al. (2009 [triangle]); Karaca et al. (2009 [triangle]); Yousefi et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1207-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H6N2O4)(H2O)4]·2H2O
  • M r = 408.97
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1207-efi1.jpg
  • a = 12.4787 (2) Å
  • b = 9.8152 (2) Å
  • c = 12.6533 (2) Å
  • β = 92.107 (2)°
  • V = 1548.74 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.31 mm−1
  • T = 120 K
  • 0.18 × 0.16 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.730, T max = 0.828
  • 8276 measured reflections
  • 1691 independent reflections
  • 1379 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.065
  • S = 0.98
  • 1691 reflections
  • 138 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035910/ng2636sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035910/ng2636Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the financial support of Natural Foundation of Heilongjiang Province.

supplementary crystallographic information

Comment

2,2'-Bipyridine was used very commonly as ending complexing ligand. Great efforts have been made to synthesize 5,5' and 6,6' position substituted derivatives (He et al., 2009; Karaca et al., 2009; Yousefi et al., 2008). Here we reported the crystal structure of a complexing compound of Ni(II) coordinating to 4,4'dicarboxyl substituted 2,2'-bipyridine derivative.

The central Ni cation coordinated to two N atoms from dianions of one 2,2'-bipyridine-5,5'-dicarboxylate and four O atoms from four waters, forming a distorted octahedral system. Ni(II) cation lies on the twofold axis of the crystal lattice. Two Ni—N bonds were generated by C2 symmetry operation from each other with bond length 2.0706 (14). Four Ni—O bond lengths are nearly equal, two of which 2.0610 (12), and another two 2.0801 (13). Each of two equivalent carboxyl anions has two unequivalent oxygen atoms, C—O bond lengths of which are equalized to be 1.266 (2) and 1.254 (2), respectively. All O atoms of carboxyls formed hydrogen bonds with both complexed waters from another complexing supermolecule and free waters into three dimentional infinite hydrgon bonding network, which stablized the whole crystal structure, along with pi-pi stacking of aromatic pyridine rings.

Experimental

A solution of 2,2'-bipyridine-5,5'-dicarboxylate (23.2 mg, 0.1 mmol) and NiCl2.6H2O (23.8 mg, 0.1 mmol) was added an aqueous solution of NaOH (0.1 mmol/ml) to adjust pH as 7.0–7.5 at room temperature. A small amount of white precipitate was removed from the resulting solution. Prism colorless crystals were obtained by slow evaporation at room temperature over a period of 10 days.

Refinement

All H atoms bonded to O atoms of ligand water and free water molecules were located in a difference map, and the distances of the O–H bonds were fixed to 0.82 Å. The other H atoms were placed in calculated positions and refined as riding, with C–H = 0.93 Å, and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing diagram of molecules, viewed down the b axis, with the weak interactions shown as dashed lines.

Crystal data

[Ni(C12H6N2O4)(H2O)4]·2H2OF(000) = 848.0
Mr = 408.97Dx = 1.754 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8276 reflections
a = 12.4787 (2) Åθ = 3.1–27.0°
b = 9.8152 (2) ŵ = 1.31 mm1
c = 12.6533 (2) ÅT = 120 K
β = 92.107 (2)°Prism, colourless
V = 1548.74 (5) Å30.18 × 0.16 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer1691 independent reflections
Radiation source: fine-focus sealed tube1379 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 27.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −15→15
Tmin = 0.730, Tmax = 0.828k = −12→12
8276 measured reflectionsl = −14→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.0426P)2] where P = (Fo2 + 2Fc2)/3
1691 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.44 e Å3
6 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.27554 (3)0.75000.01072 (11)
O10.03285 (11)0.42083 (13)0.86619 (11)0.0142 (3)
H110.0898 (11)0.4670 (18)0.8664 (17)0.019 (6)*
H12−0.0189 (14)0.475 (2)0.864 (2)0.044 (8)*
O20.15591 (10)0.29226 (13)0.70290 (10)0.0129 (3)
H210.1953 (16)0.315 (2)0.7545 (13)0.032 (7)*
H220.184 (2)0.2274 (19)0.672 (2)0.052 (9)*
O30.26260 (10)−0.06943 (12)1.12935 (10)0.0145 (3)
O40.21890 (10)0.15053 (12)1.12590 (10)0.0166 (3)
O5−0.12732 (13)0.60197 (15)0.83875 (13)0.0301 (4)
H51−0.1494 (18)0.6770 (14)0.8598 (18)0.033 (7)*
H52−0.1726 (19)0.580 (3)0.7913 (18)0.067 (10)*
N10.04499 (11)0.11232 (14)0.84534 (11)0.0106 (3)
C10.21332 (13)0.03194 (17)1.08927 (14)0.0119 (4)
C20.14678 (14)0.01069 (17)0.98899 (14)0.0116 (4)
C30.13045 (14)−0.11715 (17)0.94398 (14)0.0119 (4)
H30.1595−0.19600.97780.014*
C40.07152 (14)−0.12874 (17)0.84950 (14)0.0126 (4)
H40.0596−0.21560.81800.015*
C50.03040 (13)−0.01275 (17)0.80161 (14)0.0108 (4)
C70.10106 (14)0.12224 (17)0.93712 (14)0.0117 (4)
H70.11000.20970.96830.014*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.01160 (18)0.00978 (17)0.01056 (18)0.000−0.00259 (12)0.000
O10.0113 (7)0.0133 (7)0.0177 (7)0.0017 (5)−0.0029 (5)−0.0029 (5)
O20.0122 (6)0.0148 (7)0.0115 (7)0.0004 (5)−0.0030 (5)−0.0024 (5)
O30.0155 (7)0.0126 (6)0.0151 (7)−0.0005 (5)−0.0059 (5)0.0034 (5)
O40.0203 (7)0.0133 (7)0.0156 (7)0.0013 (5)−0.0064 (6)−0.0043 (5)
O50.0286 (9)0.0212 (8)0.0392 (10)0.0123 (6)−0.0167 (7)−0.0135 (7)
N10.0109 (8)0.0106 (8)0.0103 (8)−0.0013 (5)−0.0011 (6)0.0005 (6)
C10.0101 (9)0.0143 (9)0.0113 (9)−0.0019 (7)0.0008 (7)0.0014 (7)
C20.0108 (8)0.0148 (9)0.0092 (9)−0.0002 (7)0.0003 (7)0.0005 (7)
C30.0110 (9)0.0118 (9)0.0128 (9)0.0010 (6)−0.0007 (7)0.0020 (7)
C40.0132 (9)0.0108 (9)0.0140 (9)−0.0006 (7)0.0011 (7)−0.0018 (7)
C50.0094 (8)0.0124 (9)0.0106 (9)−0.0006 (6)0.0009 (7)−0.0007 (7)
C70.0110 (9)0.0124 (9)0.0118 (9)−0.0014 (7)0.0013 (7)−0.0015 (7)

Geometric parameters (Å, °)

Ni1—O2i2.0622 (12)O5—H520.837 (10)
Ni1—O22.0622 (12)N1—C71.337 (2)
Ni1—N1i2.0706 (14)N1—C51.356 (2)
Ni1—N12.0706 (14)C1—C21.505 (2)
Ni1—O12.0782 (13)C2—C71.388 (2)
Ni1—O1i2.0782 (13)C2—C31.390 (2)
O1—H110.843 (9)C3—C41.385 (2)
O1—H120.834 (10)C3—H30.9500
O2—H210.833 (10)C4—C51.380 (2)
O2—H220.834 (10)C4—H40.9500
O3—C11.266 (2)C5—C5i1.486 (3)
O4—C11.254 (2)C7—H70.9500
O5—H510.834 (10)
O2i—Ni1—O2170.87 (7)C7—N1—C5118.59 (14)
O2i—Ni1—N1i89.51 (5)C7—N1—Ni1124.87 (11)
O2—Ni1—N1i97.57 (5)C5—N1—Ni1115.66 (12)
O2i—Ni1—N197.57 (5)O4—C1—O3124.20 (16)
O2—Ni1—N189.51 (5)O4—C1—C2117.49 (15)
N1i—Ni1—N178.63 (8)O3—C1—C2118.27 (15)
O2i—Ni1—O184.53 (5)C7—C2—C3117.82 (16)
O2—Ni1—O189.21 (5)C7—C2—C1119.58 (15)
N1i—Ni1—O1170.17 (6)C3—C2—C1122.59 (15)
N1—Ni1—O194.39 (5)C4—C3—C2119.54 (15)
O2i—Ni1—O1i89.21 (5)C4—C3—H3120.2
O2—Ni1—O1i84.53 (5)C2—C3—H3120.2
N1i—Ni1—O1i94.39 (5)C5—C4—C3119.24 (16)
N1—Ni1—O1i170.17 (6)C5—C4—H4120.4
O1—Ni1—O1i93.34 (7)C3—C4—H4120.4
Ni1—O1—H11121.0 (15)N1—C5—C4121.70 (16)
Ni1—O1—H12106.4 (18)N1—C5—C5i114.53 (10)
H11—O1—H12108 (2)C4—C5—C5i123.75 (10)
Ni1—O2—H21109.3 (17)N1—C7—C2123.09 (15)
Ni1—O2—H22119.7 (19)N1—C7—H7118.5
H21—O2—H22109 (2)C2—C7—H7118.5
H51—O5—H52104 (3)
O2i—Ni1—N1—C7−99.70 (14)C7—C2—C3—C41.0 (3)
O2—Ni1—N1—C774.51 (14)C1—C2—C3—C4−177.65 (16)
N1i—Ni1—N1—C7172.33 (18)C2—C3—C4—C50.2 (3)
O1—Ni1—N1—C7−14.65 (15)C7—N1—C5—C40.2 (3)
O1i—Ni1—N1—C7127.1 (3)Ni1—N1—C5—C4169.99 (14)
O2i—Ni1—N1—C591.22 (12)C7—N1—C5—C5i−178.46 (17)
O2—Ni1—N1—C5−94.57 (12)Ni1—N1—C5—C5i−8.7 (2)
N1i—Ni1—N1—C53.25 (9)C3—C4—C5—N1−0.9 (3)
O1—Ni1—N1—C5176.26 (12)C3—C4—C5—C5i177.6 (2)
O1i—Ni1—N1—C5−42.0 (4)C5—N1—C7—C21.2 (3)
O4—C1—C2—C74.6 (3)Ni1—N1—C7—C2−167.62 (13)
O3—C1—C2—C7−173.22 (16)C3—C2—C7—N1−1.8 (3)
O4—C1—C2—C3−176.75 (16)C1—C2—C7—N1176.94 (15)
O3—C1—C2—C35.4 (3)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H52···O3ii0.84 (1)2.18 (2)2.9566 (19)155 (3)
O2—H22···O3iii0.83 (1)1.92 (1)2.7410 (18)168 (3)
O5—H51···O4iv0.83 (1)1.91 (1)2.7286 (19)166 (2)
O2—H21···O4v0.83 (1)1.85 (1)2.6831 (17)175 (2)
O1—H11···O4v0.84 (1)2.65 (2)3.1740 (18)122 (2)
O1—H11···O3v0.84 (1)2.10 (1)2.9386 (18)176 (2)
O1—H12···O50.83 (1)1.86 (1)2.688 (2)171 (3)

Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2; (iii) x, −y, z−1/2; (iv) −x, −y+1, −z+2; (v) −x+1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2636).

References

  • Bruker, (2005). APEX2, SAINT and SADABS Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • He, X., Qu, G.-R., Deng, D. & Ji, B. (2009). Acta Cryst. E65, o985. [PMC free article] [PubMed]
  • Karaca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m335–m336. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284–m1285. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography