PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2392–o2393.
Published online 2009 September 9. doi:  10.1107/S1600536809035752
PMCID: PMC2970482

(E)-N′-(3,4-Dimethoxy­benzyl­idene)-2,4-dihydroxy­benzohydrazide methanol solvate

Abstract

The title compound, C16H16N2O5·CH3OH, was obtained from a condensation reaction of 3,4-dimethoxy­benzaldehyde and 2,4-dihydroxy­benzohydrazide. The non-H atoms of the Schiff base mol­ecule are approximately coplanar (r.m.s. deviation = 0.043 Å) and the dihedral angle between the two benzene rings is 1.6 (1)°. The mol­ecule adopts an E configuration with respect to the C=N double bond. An intra­molecular O—H(...)O hydrogen bond is observed. The Schiff base and methanol mol­ecules are linked into a two-dimensional network parallel to (10An external file that holds a picture, illustration, etc.
Object name is e-65-o2392-efi1.jpg) by inter­molecular N—H(...)O, O—H(...)N and O—H(...)O hydrogen bonds.

Related literature

For background to Schiff base compounds, hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006 [triangle]); Khattab et al. (2005 [triangle]); Karthikeyan et al. (2006 [triangle]); Okabe et al. (1993 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Shan et al. (2008 [triangle]); Fun et al. (2008 [triangle]); Ma et al. (2008 [triangle]); Diao et al. (2008a [triangle],b [triangle]); Ejsmont et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2392-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O5·CH4O
  • M r = 348.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2392-efi2.jpg
  • a = 8.497 (1) Å
  • b = 17.431 (2) Å
  • c = 11.933 (2) Å
  • β = 102.93 (2)°
  • V = 1722.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.25 × 0.23 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.975, T max = 0.977
  • 10465 measured reflections
  • 3732 independent reflections
  • 2017 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.129
  • S = 1.03
  • 3732 reflections
  • 235 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035752/ci2900sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035752/ci2900Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hydrazones and Schiff bases have been attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab et al., 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan et al., 2008; Fun et al., 2008; Ma et al., 2008; Diao et al., 2008a,b; Ejsmont et al., 2008). As part of the ongoing study, we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The compound consists of a Schiff base molecule and a methanol molecule. The dihedral angle between the two benzene rings is 1.6 (1)°. The Schiff base molecule displays an E configuration about the C═N bond. The bond lengths are typical (Allen et al., 1987). The molecules are linked into a two-dimensional network parallel to the (101) by intermolecular N—H···O, O—H···N, and O—H···O hydrogen bonds (Fig. 2 and Table 1).

Experimental

3,4-Dimethoxybenzaldehyde (1.0 mmol, 166.2 mg) was dissolved in methanol (50 ml), then 2,4-dihydroxybenzohydrazide (1.0 mmol, 168.2 mg) was added slowly into the solution, and the mixture was kept at reflux with continuous stirring for 1 h. After the solution had cooled to room temperature colourless crystallites appeared. The crystallites were filtered and washed with methanol for three times. Recrystallization from an absolute methanol yielded block-shaped single crystals of the title compound.

Refinement

Atom H1A was located from a difference Fourier map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions with C-H = 0.93-0.96 Å and O-H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl). A rotating group model was used for methyl and hydroxyl groups.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates an intramolecular hydrogen bond.
Fig. 2.
The molecular packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C16H16N2O5·CH4OF(000) = 736
Mr = 348.35Dx = 1.343 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1327 reflections
a = 8.497 (1) Åθ = 2.3–24.5°
b = 17.431 (2) ŵ = 0.10 mm1
c = 11.933 (2) ÅT = 298 K
β = 102.93 (2)°Block, colourless
V = 1722.6 (4) Å30.25 × 0.23 × 0.23 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3732 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
graphiteRint = 0.043
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→10
Tmin = 0.975, Tmax = 0.977k = −20→22
10465 measured reflectionsl = −15→7

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0522P)2 + 0.0211P] where P = (Fo2 + 2Fc2)/3
3732 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.9655 (2)0.08862 (10)0.61461 (15)0.0408 (4)
N20.8536 (2)0.03538 (10)0.56016 (14)0.0414 (4)
O11.2219 (2)0.05972 (9)0.95309 (12)0.0623 (5)
H11.15610.03160.91180.093*
O21.52034 (18)0.28449 (9)0.94432 (11)0.0499 (4)
H21.54420.31490.89840.075*
O31.01873 (19)0.01674 (9)0.77490 (12)0.0544 (4)
O40.42243 (18)−0.17176 (9)0.40757 (13)0.0562 (4)
O50.29676 (18)−0.13286 (8)0.19882 (13)0.0582 (5)
O60.6296 (2)0.37824 (9)0.81028 (13)0.0639 (5)
H60.59490.42220.80070.096*
C11.1618 (2)0.13446 (11)0.77945 (16)0.0379 (5)
C21.2479 (3)0.12222 (12)0.89285 (17)0.0419 (5)
C31.3640 (3)0.17364 (13)0.94638 (17)0.0445 (5)
H31.41780.16551.02230.053*
C41.4008 (2)0.23680 (12)0.88820 (17)0.0393 (5)
C51.3173 (3)0.25089 (12)0.77654 (17)0.0461 (6)
H51.34010.29420.73750.055*
C61.2005 (2)0.20011 (12)0.72414 (17)0.0442 (6)
H6A1.14500.20980.64900.053*
C71.0444 (2)0.07663 (12)0.72359 (17)0.0401 (5)
C80.7848 (2)0.05124 (12)0.45725 (18)0.0412 (5)
H80.81520.09560.42420.049*
C90.6598 (2)0.00287 (11)0.38858 (17)0.0373 (5)
C100.6063 (2)−0.06345 (11)0.43485 (17)0.0408 (5)
H100.6532−0.07810.50980.049*
C110.4845 (2)−0.10693 (11)0.36970 (18)0.0414 (5)
C120.4150 (2)−0.08531 (12)0.25628 (18)0.0434 (5)
C130.4679 (3)−0.02028 (12)0.21043 (18)0.0479 (6)
H130.4218−0.00570.13530.057*
C140.5908 (3)0.02357 (12)0.27733 (17)0.0443 (5)
H140.62670.06740.24630.053*
C150.4975 (3)−0.19856 (14)0.5184 (2)0.0648 (7)
H15A0.6088−0.21000.52090.097*
H15B0.4437−0.24410.53530.097*
H15C0.4912−0.15970.57430.097*
C160.2220 (3)−0.11211 (15)0.0836 (2)0.0661 (7)
H16A0.1795−0.06100.08260.099*
H16B0.1358−0.14730.05390.099*
H16C0.3004−0.11410.03690.099*
C170.6766 (4)0.35311 (16)0.7103 (2)0.0814 (9)
H17A0.78120.37360.70930.122*
H17B0.59950.37050.64360.122*
H17C0.68120.29810.70990.122*
H1A0.979 (2)0.1297 (8)0.5719 (15)0.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0420 (10)0.0382 (11)0.0393 (11)−0.0067 (9)0.0028 (8)−0.0003 (8)
N20.0418 (10)0.0372 (11)0.0433 (11)−0.0048 (8)0.0056 (8)−0.0044 (8)
O10.0787 (13)0.0582 (11)0.0429 (10)−0.0152 (9)−0.0014 (8)0.0154 (8)
O20.0562 (10)0.0511 (10)0.0370 (9)−0.0089 (8)−0.0011 (7)−0.0071 (7)
O30.0647 (11)0.0474 (10)0.0475 (10)−0.0106 (8)0.0049 (8)0.0089 (7)
O40.0589 (10)0.0405 (9)0.0654 (11)−0.0096 (8)0.0057 (8)0.0064 (8)
O50.0585 (10)0.0475 (10)0.0598 (11)−0.0110 (8)−0.0056 (8)−0.0038 (8)
O60.0943 (14)0.0413 (10)0.0577 (11)−0.0014 (10)0.0201 (9)−0.0022 (8)
C10.0427 (12)0.0373 (12)0.0311 (12)0.0030 (10)0.0031 (9)0.0000 (9)
C20.0522 (13)0.0417 (13)0.0321 (12)0.0043 (11)0.0099 (10)0.0038 (10)
C30.0528 (13)0.0486 (14)0.0286 (12)0.0043 (11)0.0012 (10)−0.0003 (10)
C40.0408 (12)0.0401 (13)0.0340 (12)0.0023 (10)0.0023 (9)−0.0099 (10)
C50.0559 (14)0.0419 (14)0.0354 (13)−0.0025 (11)−0.0005 (10)0.0033 (10)
C60.0521 (13)0.0445 (14)0.0297 (12)−0.0002 (11)−0.0043 (10)0.0016 (10)
C70.0419 (12)0.0399 (13)0.0367 (13)0.0026 (10)0.0048 (10)0.0000 (10)
C80.0415 (12)0.0352 (12)0.0453 (14)−0.0023 (10)0.0063 (10)−0.0015 (10)
C90.0368 (12)0.0316 (12)0.0419 (13)−0.0005 (9)0.0053 (9)−0.0040 (9)
C100.0418 (12)0.0368 (13)0.0416 (13)0.0029 (10)0.0047 (10)−0.0026 (10)
C110.0424 (12)0.0294 (12)0.0530 (14)0.0006 (10)0.0116 (10)−0.0015 (10)
C120.0414 (12)0.0339 (12)0.0513 (15)−0.0027 (10)0.0026 (10)−0.0103 (10)
C130.0506 (14)0.0445 (14)0.0446 (14)−0.0028 (11)0.0022 (11)−0.0019 (11)
C140.0482 (13)0.0377 (13)0.0449 (14)−0.0052 (10)0.0059 (10)0.0011 (10)
C150.0699 (17)0.0456 (15)0.0781 (19)−0.0015 (13)0.0147 (14)0.0184 (13)
C160.0569 (15)0.0674 (18)0.0628 (18)−0.0137 (14)−0.0104 (12)−0.0078 (13)
C170.114 (3)0.072 (2)0.0633 (19)−0.0190 (18)0.0304 (17)−0.0166 (15)

Geometric parameters (Å, °)

N1—C71.339 (3)C5—H50.93
N1—N21.382 (2)C6—H6A0.93
N1—H1A0.901 (9)C8—C91.456 (3)
N2—C81.267 (2)C8—H80.93
O1—C21.350 (2)C9—C141.374 (3)
O1—H10.82C9—C101.400 (3)
O2—C41.367 (2)C10—C111.375 (3)
O2—H20.82C10—H100.93
O3—C71.254 (2)C11—C121.402 (3)
O4—C111.366 (2)C12—C131.377 (3)
O4—C151.413 (3)C13—C141.393 (3)
O5—C121.363 (2)C13—H130.93
O5—C161.426 (3)C14—H140.93
O6—C171.410 (3)C15—H15A0.96
O6—H60.82C15—H15B0.96
C1—C61.397 (3)C15—H15C0.96
C1—C21.403 (3)C16—H16A0.96
C1—C71.469 (3)C16—H16B0.96
C2—C31.380 (3)C16—H16C0.96
C3—C41.374 (3)C17—H17A0.96
C3—H30.93C17—H17B0.96
C4—C51.384 (3)C17—H17C0.96
C5—C61.372 (3)
C7—N1—N2119.58 (17)C10—C9—C8121.09 (19)
C7—N1—H1A125.0 (14)C11—C10—C9120.1 (2)
N2—N1—H1A115.4 (13)C11—C10—H10119.9
C8—N2—N1115.41 (17)C9—C10—H10119.9
C2—O1—H1109.5O4—C11—C10124.5 (2)
C4—O2—H2109.5O4—C11—C12115.55 (18)
C11—O4—C15117.13 (17)C10—C11—C12119.9 (2)
C12—O5—C16116.74 (18)O5—C12—C13124.7 (2)
C17—O6—H6109.5O5—C12—C11115.22 (19)
C6—C1—C2116.94 (18)C13—C12—C11120.03 (19)
C6—C1—C7123.76 (18)C12—C13—C14119.6 (2)
C2—C1—C7119.21 (18)C12—C13—H13120.2
O1—C2—C3117.58 (19)C14—C13—H13120.2
O1—C2—C1121.59 (19)C9—C14—C13120.9 (2)
C3—C2—C1120.83 (19)C9—C14—H14119.6
C4—C3—C2120.42 (19)C13—C14—H14119.6
C4—C3—H3119.8O4—C15—H15A109.5
C2—C3—H3119.8O4—C15—H15B109.5
O2—C4—C3117.89 (18)H15A—C15—H15B109.5
O2—C4—C5121.9 (2)O4—C15—H15C109.5
C3—C4—C5120.2 (2)H15A—C15—H15C109.5
C6—C5—C4119.1 (2)H15B—C15—H15C109.5
C6—C5—H5120.4O5—C16—H16A109.5
C4—C5—H5120.4O5—C16—H16B109.5
C5—C6—C1122.43 (19)H16A—C16—H16B109.5
C5—C6—H6A118.8O5—C16—H16C109.5
C1—C6—H6A118.8H16A—C16—H16C109.5
O3—C7—N1120.01 (19)H16B—C16—H16C109.5
O3—C7—C1121.63 (19)O6—C17—H17A109.5
N1—C7—C1118.35 (19)O6—C17—H17B109.5
N2—C8—C9122.7 (2)H17A—C17—H17B109.5
N2—C8—H8118.7O6—C17—H17C109.5
C9—C8—H8118.7H17A—C17—H17C109.5
C14—C9—C10119.45 (18)H17B—C17—H17C109.5
C14—C9—C8119.44 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.90 (1)2.22 (1)3.108 (2)170 (2)
O6—H6···N2ii0.822.553.133 (2)129
O6—H6···O3ii0.822.022.807 (2)161
O2—H2···O6iii0.821.792.599 (2)171
O1—H1···O30.821.802.534 (2)148

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2900).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470. [PMC free article] [PubMed]
  • Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101. [PMC free article] [PubMed]
  • Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128. [PMC free article] [PubMed]
  • Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. [PMC free article] [PubMed]
  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem.14, 7482–7489. [PubMed]
  • Khattab, S. N. (2005). Molecules, 10, 1218–1228. [PubMed]
  • Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem.41, 353–359. [PubMed]
  • Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210. [PMC free article] [PubMed]
  • Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  • Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography