PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2378.
Published online 2009 September 9. doi:  10.1107/S1600536809035429
PMCID: PMC2970478

4-Methoxy­anilinium chloride

Abstract

The crystal structure of the title compound, C7H10NO+·Cl, was synthesized by the reaction of 4-methoxy­aniline and hydro­chloric acid. In the crystal structure, the ions are involved in inter­molecular N—H(...)Cl hydrogen bonds.

Related literature

For a similar organic acid-base product, see: Wu et al. (2006 [triangle]). This work is part of a systematic investigation of dielectric–ferroelectric materials, including organic ligands, metal–organic coordination compounds and organic–inorganic hybrid materials; see: Li et al. (2008 [triangle]); Hang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2378-scheme1.jpg

Experimental

Crystal data

  • C7H10NO+·Cl
  • M r = 159.61
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2378-efi1.jpg
  • a = 8.905 (2) Å
  • b = 8.489 (2) Å
  • c = 21.817 (4) Å
  • V = 1649.3 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.924, T max = 0.924
  • 15436 measured reflections
  • 1886 independent reflections
  • 1452 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.165
  • S = 1.12
  • 1886 reflections
  • 91 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035429/im2133sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035429/im2133Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

supplementary crystallographic information

Comment

Acid-base reactions of organic reactands were already widely researched by ancient chemists (Wu et al., 2006). This study is a part of a systematic investigation of dielectric-ferroelectric materials, including organic ligands, metal-organic coordination compounds and organic-inorganic hybrid materials (Li et al., 2008; Hang et al., 2009). Nevertheless, 4-methoxy-anilinium chloride shows no dielectric irregularity in the temperature range of 80 K to 400 K, (m.p. 401 K).

The asymmetric unit of the title compound is composed of cationic (CH3O–C6H4–NH3+) and chloride anions (Fig 1). Intramolecular hydrogen bonds between the ammonium groups of the organic cations and the chloride anions are observed in the crystal structure.

Experimental

Single crystals of 4-methoxy-anilinium chloride are prepared by slow evaporation at room temperature of 20 mL of an ethanolic solution of 4-methoxyphenylamine and an excess of hydrogen chloride (6 mol/L).

Refinement

All hydrogen atoms were calculated geometrically with C—H distances of 0.93 Å for aromatic C–H functions, 0.96 Å for the methyl group and 0.89 Å for the ammonium substituent. All hydrogen atoms were allowed to ride on the C and N atoms to which they are bonded with thermal parameters of Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
View of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C7H10NO+·ClF(000) = 672
Mr = 159.61Dx = 1.286 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6458 reflections
a = 8.905 (2) Åθ = 3.0–27.6°
b = 8.489 (2) ŵ = 0.40 mm1
c = 21.817 (4) ÅT = 298 K
V = 1649.3 (6) Å3Prism, colourless
Z = 80.20 × 0.20 × 0.20 mm

Data collection

Rigaku SCXmini diffractometer1886 independent reflections
Radiation source: fine-focus sealed tube1452 reflections with I > 2σ(I)
graphiteRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −10→11
Tmin = 0.924, Tmax = 0.924l = −27→28
15436 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0824P)2 + 0.5018P] where P = (Fo2 + 2Fc2)/3
1886 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.75138 (6)0.98509 (7)0.52111 (3)0.0470 (3)
O10.1534 (2)0.1996 (2)0.29469 (8)0.0623 (6)
N10.0252 (3)0.2494 (3)0.04478 (10)0.0617 (7)
H1D−0.04680.32030.03830.093*
H1E−0.00590.15530.03200.093*
H1F0.10730.27700.02420.093*
C20.1175 (3)0.2222 (3)0.23454 (10)0.0438 (6)
C50.0595 (3)0.2423 (3)0.11049 (11)0.0441 (6)
C40.1677 (3)0.1392 (3)0.13138 (12)0.0561 (7)
H4A0.22030.07620.10390.067*
C6−0.0179 (3)0.3363 (3)0.15081 (12)0.0492 (6)
H6A−0.08950.40690.13630.059*
C70.0108 (3)0.3259 (3)0.21326 (11)0.0472 (6)
H7A−0.04200.38900.24070.057*
C30.1970 (3)0.1303 (4)0.19295 (13)0.0575 (7)
H3A0.27100.06210.20710.069*
C10.0870 (4)0.3025 (4)0.33900 (13)0.0761 (10)
H1A0.12110.27400.37920.114*
H1B−0.02030.29340.33710.114*
H1C0.11570.40920.33040.114*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0461 (4)0.0472 (4)0.0478 (4)−0.0017 (2)0.0013 (3)−0.0042 (2)
O10.0691 (13)0.0735 (13)0.0442 (10)−0.0047 (11)−0.0113 (9)0.0042 (9)
N10.0690 (16)0.0723 (16)0.0439 (12)−0.0200 (12)−0.0091 (11)0.0082 (11)
C20.0435 (14)0.0466 (12)0.0414 (13)−0.0109 (11)−0.0051 (10)0.0065 (10)
C50.0440 (13)0.0496 (13)0.0388 (12)−0.0143 (11)−0.0040 (10)0.0055 (10)
C40.0598 (16)0.0597 (16)0.0488 (15)0.0083 (13)0.0060 (12)−0.0031 (12)
C60.0421 (13)0.0499 (14)0.0554 (14)0.0024 (11)−0.0056 (11)0.0060 (12)
C70.0404 (13)0.0526 (15)0.0486 (13)−0.0008 (11)0.0000 (11)−0.0056 (11)
C30.0570 (16)0.0592 (16)0.0564 (16)0.0167 (14)−0.0053 (13)0.0062 (13)
C10.075 (2)0.109 (3)0.0448 (15)−0.011 (2)−0.0045 (14)−0.0147 (16)

Geometric parameters (Å, °)

O1—C21.364 (3)C4—C31.370 (4)
O1—C11.431 (4)C4—H4A0.9300
N1—C51.467 (3)C6—C71.389 (4)
N1—H1D0.8900C6—H6A0.9300
N1—H1E0.8900C7—H7A0.9300
N1—H1F0.8900C3—H3A0.9300
C2—C71.376 (4)C1—H1A0.9600
C2—C31.390 (4)C1—H1B0.9600
C5—C61.373 (4)C1—H1C0.9600
C5—C41.380 (4)
C2—O1—C1117.9 (2)C5—C6—C7119.9 (2)
C5—N1—H1D109.5C5—C6—H6A120.0
C5—N1—H1E109.5C7—C6—H6A120.0
H1D—N1—H1E109.5C2—C7—C6119.9 (2)
C5—N1—H1F109.5C2—C7—H7A120.0
H1D—N1—H1F109.5C6—C7—H7A120.0
H1E—N1—H1F109.5C4—C3—C2120.8 (2)
O1—C2—C7125.2 (2)C4—C3—H3A119.6
O1—C2—C3115.4 (2)C2—C3—H3A119.6
C7—C2—C3119.4 (2)O1—C1—H1A109.5
C6—C5—C4120.5 (2)O1—C1—H1B109.5
C6—C5—N1119.8 (2)H1A—C1—H1B109.5
C4—C5—N1119.6 (2)O1—C1—H1C109.5
C3—C4—C5119.5 (2)H1A—C1—H1C109.5
C3—C4—H4A120.3H1B—C1—H1C109.5
C5—C4—H4A120.3
C1—O1—C2—C7−6.9 (4)O1—C2—C7—C6−178.8 (2)
C1—O1—C2—C3173.4 (3)C3—C2—C7—C60.9 (4)
C6—C5—C4—C30.4 (4)C5—C6—C7—C20.4 (4)
N1—C5—C4—C3−178.5 (2)C5—C4—C3—C21.0 (4)
C4—C5—C6—C7−1.1 (4)O1—C2—C3—C4178.1 (3)
N1—C5—C6—C7177.8 (2)C7—C2—C3—C4−1.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl1i0.892.473.360 (3)179
N1—H1E···Cl1ii0.892.503.209 (2)137
N1—H1F···Cl1iii0.892.383.167 (2)147

Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) −x+1/2, −y+1, z−1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2133).

References

  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des.5, 2026–2029.
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, B.-C., Dai, X.-Y., Xiao, F.-P. & Jin, L.-F. (2006). Acta Cryst. E62, o4327–o4328.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography