PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2589.
Published online 2009 September 30. doi:  10.1107/S1600536809038604
PMCID: PMC2970468

4,4′-Bis(1,2,4-triazol-1-ylmeth­yl)biphen­yl

Abstract

In the title compound, C18H16N6, the complete mol­ecule is generated by crystallographic inversion symmetry. The dihedral angle between the benzene and triazole rings is 84.1 (3)°. The crystal structure is stabilized by weak C—H(...)N hydrogen bonds.

Related literature

For a related structure, see: Wang et al. (2007 [triangle]). For background to the use of flexible ligands to form coordination networks, see: Martin et al. (2007 [triangle]); Yaghi et al. (1998 [triangle]); Sun et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2589-scheme1.jpg

Experimental

Crystal data

  • C18H16N6
  • M r = 316.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2589-efi1.jpg
  • a = 16.590 (3) Å
  • b = 5.3646 (9) Å
  • c = 8.8009 (14) Å
  • β = 92.567 (3)°
  • V = 782.5 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.21 × 0.17 × 0.11 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.982, T max = 0.991
  • 3679 measured reflections
  • 1402 independent reflections
  • 870 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.107
  • S = 0.83
  • 1402 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038604/hb5117sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038604/hb5117Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful for funding from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization in Universities of Shanxi Province (20070308) and the Start-up Fund of the Northern University of China.

supplementary crystallographic information

Comment

It is well-known that those ligands containing a flexible backbone provide a bigger number of complexes thanks to their flexibility and conformational freedom that allow for greater structural diversity (Yaghi et al., 1998; Sun et al., 2006; Martin et al., 2007).

4,4'-Bis(1,2,4-triazol-1-ylmethyl)biphenyl (bix) is a excellent building block and has been employed to construct interesting structural polymer with unique properties (Wang et al., 2007).

In an attempt to form a Zn(II) complex with bix, we adventitiously formed the title compound (I) and its crystal structure is determined herein.

The title compound cyrstallizes with one half-molecule in the asymmetric unit. As illustrated in Fig. 1, the bix adopts a anti conformation and has crystallographic 1 symmetry and the dihedral angle between the benzene and triazole rings is 84.1 (3)°.

In the crystal structure, weak intermolecular C—H···N hydrogen bond help to stabilizing the packing.

Experimental

Equimolar (28 mg, 0.1 mmol) Zn(OAC)2.6H2O in water (3 ml) and bix (26 mg, 0.1 mmol) in CH3CN and CH3OH solutions (8 ml) were mixed and heated at 428 K for 72 h in a pressurized reactor. Slow evaporation of this solution resulted in the formation of some colourless blocks of (I).

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of (I), showing ellipsoids drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radius. Symmetry code: (i) –x, 1–y, 1–z.

Crystal data

C18H16N6F(000) = 332
Mr = 316.37Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1402 reflections
a = 16.590 (3) Åθ = 2.5–25.2°
b = 5.3646 (9) ŵ = 0.09 mm1
c = 8.8009 (14) ÅT = 298 K
β = 92.567 (3)°Block, colourless
V = 782.5 (2) Å30.21 × 0.17 × 0.11 mm
Z = 2

Data collection

Bruker APEXII area-detector diffractometer1402 independent reflections
Radiation source: fine-focus sealed tube870 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −19→18
Tmin = 0.982, Tmax = 0.991k = −6→5
3679 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.83w = 1/[σ2(Fo2) + (0.05P)2 + 0.3476P] where P = (Fo2 + 2Fc2)/3
1402 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N30.34746 (8)0.4361 (3)0.45637 (17)0.0522 (4)
C70.04239 (10)0.4897 (3)0.4755 (2)0.0465 (5)
C40.20243 (10)0.4473 (4)0.3827 (2)0.0511 (5)
C30.28751 (10)0.4191 (4)0.3315 (2)0.0602 (6)
H3A0.29270.25900.28170.072*
H3B0.29790.54790.25760.072*
N20.35680 (10)0.6499 (3)0.5390 (2)0.0651 (5)
C20.41506 (12)0.5892 (5)0.6378 (2)0.0656 (6)
H20.43520.70010.71130.079*
N10.44371 (10)0.3558 (4)0.6256 (2)0.0680 (5)
C60.09257 (11)0.2995 (5)0.5269 (3)0.0714 (7)
H60.07330.18270.59450.086*
C10.39952 (12)0.2674 (4)0.5101 (2)0.0605 (6)
H10.40420.10710.47130.073*
C90.15350 (12)0.6357 (4)0.3306 (3)0.0673 (6)
H90.17320.75270.26380.081*
C80.07478 (12)0.6559 (4)0.3758 (3)0.0682 (6)
H80.04280.78580.33740.082*
C50.17066 (11)0.2789 (5)0.4804 (3)0.0718 (7)
H50.20250.14710.51650.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N30.0403 (8)0.0588 (10)0.0573 (9)−0.0008 (8)0.0015 (7)−0.0034 (8)
C70.0429 (9)0.0495 (11)0.0467 (10)−0.0041 (8)−0.0038 (8)−0.0044 (9)
C40.0423 (10)0.0637 (13)0.0470 (10)−0.0044 (9)−0.0030 (8)−0.0056 (10)
C30.0468 (11)0.0801 (15)0.0535 (11)−0.0024 (10)0.0002 (9)−0.0071 (11)
N20.0543 (10)0.0649 (12)0.0754 (12)−0.0021 (9)−0.0055 (8)−0.0133 (10)
C20.0507 (11)0.0816 (17)0.0640 (13)−0.0115 (12)−0.0022 (10)−0.0072 (12)
N10.0562 (10)0.0846 (14)0.0627 (11)0.0017 (10)−0.0025 (8)0.0150 (10)
C60.0494 (12)0.0846 (17)0.0804 (15)0.0065 (11)0.0063 (10)0.0323 (13)
C10.0572 (12)0.0605 (13)0.0640 (13)0.0020 (10)0.0057 (10)0.0072 (11)
C90.0586 (12)0.0620 (14)0.0826 (15)0.0013 (11)0.0168 (11)0.0155 (12)
C80.0592 (13)0.0582 (13)0.0880 (16)0.0095 (11)0.0140 (11)0.0177 (12)
C50.0474 (12)0.0834 (17)0.0843 (16)0.0113 (11)0.0012 (10)0.0264 (13)

Geometric parameters (Å, °)

N3—C11.324 (2)N2—C21.312 (3)
N3—N21.363 (2)C2—N11.345 (3)
N3—C31.451 (2)C2—H20.9300
C7—C81.377 (3)N1—C11.315 (3)
C7—C61.380 (3)C6—C51.380 (3)
C7—C7i1.494 (3)C6—H60.9300
C4—C91.363 (3)C1—H10.9300
C4—C51.369 (3)C9—C81.386 (3)
C4—C31.508 (3)C9—H90.9300
C3—H3A0.9700C8—H80.9300
C3—H3B0.9700C5—H50.9300
C1—N3—N2109.13 (15)N1—C2—H2122.3
C1—N3—C3129.93 (18)C1—N1—C2102.16 (18)
N2—N3—C3120.94 (16)C7—C6—C5121.5 (2)
C8—C7—C6116.16 (17)C7—C6—H6119.3
C8—C7—C7i122.4 (2)C5—C6—H6119.3
C6—C7—C7i121.5 (2)N1—C1—N3111.2 (2)
C9—C4—C5117.42 (18)N1—C1—H1124.4
C9—C4—C3121.69 (19)N3—C1—H1124.4
C5—C4—C3120.87 (19)C4—C9—C8121.1 (2)
N3—C3—C4112.74 (15)C4—C9—H9119.5
N3—C3—H3A109.0C8—C9—H9119.5
C4—C3—H3A109.0C7—C8—C9122.1 (2)
N3—C3—H3B109.0C7—C8—H8118.9
C4—C3—H3B109.0C9—C8—H8118.9
H3A—C3—H3B107.8C4—C5—C6121.7 (2)
C2—N2—N3101.99 (17)C4—C5—H5119.1
N2—C2—N1115.49 (19)C6—C5—H5119.1
N2—C2—H2122.3

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···N1ii0.932.563.381 (2)148

Symmetry codes: (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5117).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chem.46, 7917–7922. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Sun, C. Y., Gao, S. & Jin, L. P. (2006). Eur. J. Inorg. Chem. pp. 2411–2421.
  • Wang, X. L., Qin, C., Wang, E. B. & Su, Z. M. (2007). Chem. Commun. pp. 4245–4247. [PubMed]
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography