PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2375.
Published online 2009 September 9. doi:  10.1107/S1600536809034515
PMCID: PMC2970463

2-[(1-Methyl-1H-pyrrol-2-yl)carbonyl­meth­yl]isoindoline-1,3-dione

Abstract

The asymmetric unit of the title compound, C15H12N2O3, contains two almost identical mol­ecules forming an nearly C 2-symmetric dimeric pattern. The dihedral angles between the pyrrole ring and the phthalimide unit are 82.95 (8) and 86.57 (8)° for the two mol­ecules. Within such a dimer, the phthalimide units of the two mol­ecules form a dihedral angle of 1.5 (5)°.

Related literature

For regioselective synthesis of acyl­pyrroles see: Andersen & Exner (1977 [triangle]); Massa et al. (1990 [triangle]); Katritzky et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2375-scheme1.jpg

Experimental

Crystal data

  • C15H12N2O3
  • M r = 268.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2375-efi1.jpg
  • a = 10.8897 (7) Å
  • b = 14.8466 (4) Å
  • c = 15.8200 (9) Å
  • β = 101.619 (3)°
  • V = 2505.3 (2) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 0.84 mm−1
  • T = 193 K
  • 0.51 × 0.29 × 0.26 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 5001 measured reflections
  • 4744 independent reflections
  • 4400 reflections with I > 2σ(I)
  • R int = 0.034
  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.127
  • S = 1.05
  • 4744 reflections
  • 364 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809034515/bt5047sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034515/bt5047Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Acylpyrroles are interesting building-blocks in the synthesis of therapeutic agents, e.g. in the preparation of small molecule drugs used for chemotherapy (Massa et al., 1990). In line with this notion, regiospecific C-acylation of pyrroles in 2- or 3-position is a key for straightforward synthetic strategies of such organic molecules. As shown by Katritzky et al. (2003) regioselective 2-acylation of pyrroles can be achieved by using N-acylbenzotriazoles as auxiliar in the presence of TiCl4. Accordingly to this concept, the title compound was synthesized and we confirmed by crystal structure analysis the pyrrole system to be substituted in 2-position.

The symmetric crystal structure contains two highly similar molecules forming a dimeric pattern. The dihedral angle between the pyrrole and phtalimid moiety of molecule A is 82.95 (8)°, wheras molecule B is forming an angle of 86.57 (8)° between these aromatic systems. However, the N-phtalyl-moieties of molecule A and B, respectively, are forming a dihedral angle of 1.5 (5)°. The two crystallographic independend molecules form dimers by πi-πi-interactions. The distance between the centroid of the ring C3 - C8 (molecule A) and the least square plane C23 - C28 (molecule B) is 3.45 Å. A perspective view of the title compound is shown in Figure 1.

Experimental

The title compound was synthesized following the general procedure for the preparation of 2-acylpyrroles established by Katritzky et al. (2003). Briefly, a solution of TiCl4 in CH2Cl2 (1.0 M, 17 ml) was added to a mixture of 1-methyl-1H-pyrrole (10,36 mmol) and 2-(2-(1H-benzo[d][1,2,3]triazol-1-yl)-2-oxoethyl) isoindoline -1,3-dione (8,3 mmol) in CH2Cl2 (20 ml) and stirred for 4 h at room temperature. The reaction was quenched by adding MeOH (5 ml). The solvents were evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using a hexane/ethylacetate gradient (80:20 - 70:30) as mobile phase to purify the product (yield: 67.5%). Crystals of the title compound were obtained by slow evaporation of a methanol solution at room temperature.

Refinement

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atoms). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Figures

Fig. 1.
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms omitted.

Crystal data

C15H12N2O3F(000) = 1120
Mr = 268.27Dx = 1.422 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.8897 (7) Åθ = 65–70°
b = 14.8466 (4) ŵ = 0.84 mm1
c = 15.8200 (9) ÅT = 193 K
β = 101.619 (3)°Block, colourless
V = 2505.3 (2) Å30.51 × 0.29 × 0.26 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.034
Radiation source: rotating anodeθmax = 69.9°, θmin = 4.1°
graphiteh = 0→13
ω/2θ scansk = 0→18
5001 measured reflectionsl = −19→18
4744 independent reflections3 standard reflections every 60 min
4400 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.127w = 1/[σ2(Fo2) + (0.073P)2 + 1.0728P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4744 reflectionsΔρmax = 0.34 e Å3
364 parametersΔρmin = −0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.39270 (13)0.34485 (10)0.01591 (9)0.0329 (3)
C20.46171 (15)0.26582 (11)0.03592 (10)0.0297 (3)
C30.57346 (14)0.29082 (10)0.10221 (10)0.0273 (3)
C40.67252 (15)0.23893 (11)0.14345 (10)0.0330 (4)
H40.67630.17620.13230.040*
C50.76675 (16)0.28191 (12)0.20197 (11)0.0360 (4)
H50.83680.24810.23090.043*
C60.76016 (16)0.37357 (12)0.21878 (11)0.0352 (4)
H60.82590.40150.25880.042*
C70.65856 (16)0.42500 (11)0.17785 (11)0.0331 (4)
H70.65310.48740.19010.040*
C80.56604 (14)0.38244 (10)0.11897 (10)0.0280 (3)
C90.44834 (15)0.41772 (11)0.06494 (11)0.0320 (4)
C100.28288 (16)0.35196 (13)−0.05247 (11)0.0383 (4)
H10A0.27920.2987−0.09060.046*
H10B0.29110.4061−0.08750.046*
C110.16021 (15)0.35816 (11)−0.01983 (10)0.0300 (3)
O120.15704 (12)0.33737 (9)0.05414 (8)0.0427 (3)
C130.05263 (15)0.38909 (10)−0.08287 (10)0.0294 (3)
N14−0.06493 (13)0.40234 (9)−0.06445 (9)0.0320 (3)
C15−0.14245 (17)0.43340 (12)−0.13630 (12)0.0397 (4)
H15−0.22840.4481−0.14060.048*
C16−0.07732 (18)0.44034 (13)−0.20208 (12)0.0427 (4)
H16−0.10980.4603−0.25930.051*
C170.04520 (17)0.41260 (11)−0.16894 (11)0.0355 (4)
H170.11170.4102−0.19960.043*
O180.43333 (11)0.19337 (8)0.00271 (8)0.0375 (3)
O190.40481 (12)0.49318 (8)0.06132 (9)0.0428 (3)
C20−0.10471 (17)0.38641 (12)0.01728 (12)0.0388 (4)
H20A−0.19070.40830.01290.058*
H20B−0.04860.41860.06370.058*
H20C−0.10150.32170.02990.058*
N210.58245 (12)0.42578 (9)0.39592 (9)0.0302 (3)
C220.47025 (15)0.43972 (10)0.33749 (10)0.0287 (3)
C230.43484 (14)0.35043 (10)0.29679 (9)0.0262 (3)
C240.33207 (15)0.32607 (11)0.23521 (10)0.0304 (3)
H240.27010.36870.21060.036*
C250.32325 (16)0.23539 (11)0.21062 (10)0.0334 (4)
H250.25390.21600.16800.040*
C260.41323 (16)0.17345 (11)0.24692 (11)0.0345 (4)
H260.40440.11240.22880.041*
C270.51668 (16)0.19874 (11)0.30963 (11)0.0329 (4)
H270.57850.15630.33490.040*
C280.52509 (14)0.28838 (10)0.33324 (10)0.0278 (3)
C290.62031 (14)0.33601 (11)0.39818 (10)0.0291 (3)
C300.64309 (16)0.49219 (11)0.45774 (11)0.0335 (4)
H30A0.66520.46380.51550.040*
H30B0.58330.54160.46120.040*
C310.76166 (14)0.53162 (10)0.43435 (10)0.0265 (3)
O320.77978 (11)0.52463 (8)0.36106 (7)0.0344 (3)
C330.84253 (14)0.57881 (10)0.50392 (10)0.0270 (3)
N340.95340 (12)0.62135 (9)0.49670 (9)0.0288 (3)
C351.00335 (15)0.66000 (11)0.57314 (11)0.0344 (4)
H351.07930.69340.58520.041*
C360.92692 (16)0.64334 (12)0.63070 (11)0.0363 (4)
H360.94020.66320.68890.044*
C370.82680 (15)0.59226 (11)0.58807 (11)0.0327 (4)
H370.75940.57030.61210.039*
O380.41466 (11)0.51066 (8)0.32588 (8)0.0388 (3)
O390.71219 (11)0.30649 (9)0.44629 (8)0.0393 (3)
C401.00841 (16)0.62710 (12)0.42003 (11)0.0364 (4)
H40A0.96060.67010.37920.055*
H40B1.00600.56770.39280.055*
H40C1.09560.64740.43660.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0290 (7)0.0358 (7)0.0341 (7)0.0020 (5)0.0066 (5)−0.0004 (6)
C20.0308 (8)0.0310 (8)0.0298 (8)−0.0018 (6)0.0123 (6)−0.0003 (6)
C30.0284 (7)0.0282 (7)0.0272 (7)−0.0024 (6)0.0103 (6)−0.0014 (6)
C40.0365 (9)0.0283 (8)0.0355 (8)0.0024 (6)0.0102 (7)−0.0005 (6)
C50.0332 (8)0.0402 (9)0.0339 (8)0.0037 (7)0.0053 (7)0.0016 (7)
C60.0329 (8)0.0409 (9)0.0316 (8)−0.0050 (7)0.0060 (6)−0.0051 (7)
C70.0374 (9)0.0281 (8)0.0364 (8)−0.0038 (6)0.0132 (7)−0.0052 (6)
C80.0293 (8)0.0273 (8)0.0303 (8)−0.0007 (6)0.0127 (6)−0.0005 (6)
C90.0336 (8)0.0307 (8)0.0352 (8)0.0018 (6)0.0151 (7)0.0014 (6)
C100.0325 (9)0.0519 (10)0.0304 (8)0.0036 (7)0.0056 (7)0.0028 (7)
C110.0326 (8)0.0277 (8)0.0289 (8)−0.0009 (6)0.0047 (6)−0.0002 (6)
O120.0387 (7)0.0584 (8)0.0311 (6)0.0024 (6)0.0069 (5)0.0083 (6)
C130.0305 (8)0.0254 (7)0.0324 (8)−0.0009 (6)0.0064 (6)−0.0012 (6)
N140.0308 (7)0.0279 (7)0.0374 (7)−0.0002 (5)0.0072 (6)−0.0012 (5)
C150.0332 (9)0.0356 (9)0.0478 (10)0.0039 (7)0.0020 (7)−0.0004 (7)
C160.0467 (10)0.0408 (10)0.0370 (9)0.0044 (8)0.0000 (8)0.0048 (8)
C170.0393 (9)0.0353 (9)0.0316 (8)0.0008 (7)0.0068 (7)0.0004 (7)
O180.0411 (7)0.0339 (6)0.0379 (6)−0.0068 (5)0.0089 (5)−0.0080 (5)
O190.0436 (7)0.0335 (6)0.0538 (8)0.0113 (5)0.0158 (6)0.0024 (5)
C200.0393 (9)0.0369 (9)0.0440 (10)−0.0007 (7)0.0171 (8)−0.0028 (7)
N210.0304 (7)0.0274 (7)0.0325 (7)−0.0070 (5)0.0055 (5)−0.0021 (5)
C220.0315 (8)0.0258 (8)0.0304 (8)−0.0037 (6)0.0100 (6)0.0021 (6)
C230.0287 (7)0.0257 (7)0.0255 (7)−0.0035 (6)0.0087 (6)0.0016 (6)
C240.0311 (8)0.0320 (8)0.0279 (8)−0.0017 (6)0.0061 (6)0.0014 (6)
C250.0358 (8)0.0353 (9)0.0292 (8)−0.0102 (7)0.0072 (6)−0.0037 (6)
C260.0440 (9)0.0271 (8)0.0351 (8)−0.0071 (7)0.0145 (7)−0.0049 (6)
C270.0365 (9)0.0274 (8)0.0369 (8)0.0020 (6)0.0124 (7)0.0005 (6)
C280.0273 (7)0.0285 (8)0.0292 (8)−0.0026 (6)0.0098 (6)0.0011 (6)
C290.0266 (8)0.0313 (8)0.0303 (8)−0.0031 (6)0.0081 (6)0.0019 (6)
C300.0348 (8)0.0331 (8)0.0333 (8)−0.0100 (7)0.0083 (7)−0.0070 (7)
C310.0282 (7)0.0200 (7)0.0304 (8)0.0014 (6)0.0040 (6)0.0004 (6)
O320.0391 (6)0.0341 (6)0.0305 (6)−0.0056 (5)0.0085 (5)−0.0030 (5)
C330.0252 (7)0.0232 (7)0.0323 (8)0.0004 (6)0.0048 (6)0.0003 (6)
N340.0264 (6)0.0261 (6)0.0338 (7)−0.0007 (5)0.0056 (5)0.0001 (5)
C350.0287 (8)0.0318 (8)0.0399 (9)−0.0027 (6)0.0005 (7)−0.0038 (7)
C360.0336 (8)0.0414 (9)0.0323 (8)−0.0001 (7)0.0028 (7)−0.0079 (7)
C370.0289 (8)0.0370 (9)0.0322 (8)−0.0010 (6)0.0062 (6)−0.0027 (7)
O380.0431 (7)0.0255 (6)0.0465 (7)0.0015 (5)0.0062 (5)0.0008 (5)
O390.0294 (6)0.0444 (7)0.0415 (7)0.0009 (5)0.0014 (5)0.0020 (5)
C400.0311 (8)0.0417 (9)0.0381 (9)−0.0029 (7)0.0108 (7)0.0031 (7)

Geometric parameters (Å, °)

N1—C21.395 (2)N21—C221.391 (2)
N1—C91.396 (2)N21—C291.393 (2)
N1—C101.446 (2)N21—C301.451 (2)
C2—O181.210 (2)C22—O381.210 (2)
C2—C31.485 (2)C22—C231.490 (2)
C3—C41.378 (2)C23—C241.376 (2)
C3—C81.391 (2)C23—C281.385 (2)
C4—C51.391 (2)C24—C251.399 (2)
C4—H40.9500C24—H240.9500
C5—C61.391 (2)C25—C261.382 (2)
C5—H50.9500C25—H250.9500
C6—C71.392 (2)C26—C271.394 (2)
C6—H60.9500C26—H260.9500
C7—C81.380 (2)C27—C281.380 (2)
C7—H70.9500C27—H270.9500
C8—C91.485 (2)C28—C291.484 (2)
C9—O191.213 (2)C29—O391.2106 (19)
C10—C111.529 (2)C30—C311.529 (2)
C10—H10A0.9900C30—H30A0.9900
C10—H10B0.9900C30—H30B0.9900
C11—O121.217 (2)C31—O321.2191 (19)
C11—C131.452 (2)C31—C331.445 (2)
C13—N141.383 (2)C33—N341.388 (2)
C13—C171.392 (2)C33—C371.390 (2)
N14—C151.353 (2)N34—C351.350 (2)
N14—C201.463 (2)N34—C401.460 (2)
C15—C161.376 (3)C35—C361.374 (2)
C15—H150.9500C35—H350.9500
C16—C171.394 (3)C36—C371.387 (2)
C16—H160.9500C36—H360.9500
C17—H170.9500C37—H370.9500
C20—H20A0.9800C40—H40A0.9800
C20—H20B0.9800C40—H40B0.9800
C20—H20C0.9800C40—H40C0.9800
C2—N1—C9111.84 (13)C22—N21—C29112.03 (13)
C2—N1—C10123.91 (14)C22—N21—C30124.51 (14)
C9—N1—C10124.06 (15)C29—N21—C30122.72 (14)
O18—C2—N1124.79 (15)O38—C22—N21125.16 (15)
O18—C2—C3129.09 (15)O38—C22—C23129.10 (15)
N1—C2—C3106.11 (13)N21—C22—C23105.72 (13)
C4—C3—C8121.75 (15)C24—C23—C28121.84 (14)
C4—C3—C2130.29 (15)C24—C23—C22129.99 (14)
C8—C3—C2107.96 (13)C28—C23—C22108.16 (13)
C3—C4—C5117.45 (15)C23—C24—C25116.77 (15)
C3—C4—H4121.3C23—C24—H24121.6
C5—C4—H4121.3C25—C24—H24121.6
C4—C5—C6121.10 (16)C26—C25—C24121.44 (15)
C4—C5—H5119.5C26—C25—H25119.3
C6—C5—H5119.5C24—C25—H25119.3
C5—C6—C7120.96 (15)C25—C26—C27121.34 (15)
C5—C6—H6119.5C25—C26—H26119.3
C7—C6—H6119.5C27—C26—H26119.3
C8—C7—C6117.81 (15)C28—C27—C26116.89 (15)
C8—C7—H7121.1C28—C27—H27121.6
C6—C7—H7121.1C26—C27—H27121.6
C7—C8—C3120.92 (15)C27—C28—C23121.71 (15)
C7—C8—C9130.92 (15)C27—C28—C29130.24 (15)
C3—C8—C9108.15 (14)C23—C28—C29108.03 (13)
O19—C9—N1124.58 (16)O39—C29—N21124.42 (15)
O19—C9—C8129.52 (16)O39—C29—C28129.53 (15)
N1—C9—C8105.91 (13)N21—C29—C28106.03 (13)
N1—C10—C11113.51 (14)N21—C30—C31112.88 (13)
N1—C10—H10A108.9N21—C30—H30A109.0
C11—C10—H10A108.9C31—C30—H30A109.0
N1—C10—H10B108.9N21—C30—H30B109.0
C11—C10—H10B108.9C31—C30—H30B109.0
H10A—C10—H10B107.7H30A—C30—H30B107.8
O12—C11—C13124.43 (15)O32—C31—C33125.11 (14)
O12—C11—C10120.35 (14)O32—C31—C30120.25 (13)
C13—C11—C10115.22 (14)C33—C31—C30114.58 (13)
N14—C13—C17107.25 (14)N34—C33—C37106.88 (13)
N14—C13—C11123.60 (14)N34—C33—C31124.40 (14)
C17—C13—C11129.14 (15)C37—C33—C31128.71 (14)
C15—N14—C13108.60 (14)C35—N34—C33108.67 (13)
C15—N14—C20123.49 (15)C35—N34—C40124.11 (14)
C13—N14—C20127.92 (14)C33—N34—C40127.20 (13)
N14—C15—C16109.35 (16)N34—C35—C36109.18 (15)
N14—C15—H15125.3N34—C35—H35125.4
C16—C15—H15125.3C36—C35—H35125.4
C15—C16—C17107.07 (16)C35—C36—C37107.34 (15)
C15—C16—H16126.5C35—C36—H36126.3
C17—C16—H16126.5C37—C36—H36126.3
C13—C17—C16107.74 (16)C36—C37—C33107.93 (14)
C13—C17—H17126.1C36—C37—H37126.0
C16—C17—H17126.1C33—C37—H37126.0
N14—C20—H20A109.5N34—C40—H40A109.5
N14—C20—H20B109.5N34—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
N14—C20—H20C109.5N34—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C9—N1—C2—O18179.77 (15)C29—N21—C22—O38176.76 (15)
C10—N1—C2—O18−5.2 (2)C30—N21—C22—O386.4 (2)
C9—N1—C2—C3−1.54 (17)C29—N21—C22—C23−1.60 (17)
C10—N1—C2—C3173.48 (14)C30—N21—C22—C23−171.96 (13)
O18—C2—C3—C4−0.6 (3)O38—C22—C23—C241.2 (3)
N1—C2—C3—C4−179.19 (15)N21—C22—C23—C24179.45 (15)
O18—C2—C3—C8178.89 (16)O38—C22—C23—C28−177.41 (16)
N1—C2—C3—C80.28 (16)N21—C22—C23—C280.87 (16)
C8—C3—C4—C5−1.0 (2)C28—C23—C24—C25−0.4 (2)
C2—C3—C4—C5178.42 (15)C22—C23—C24—C25−178.77 (15)
C3—C4—C5—C60.7 (2)C23—C24—C25—C260.3 (2)
C4—C5—C6—C70.4 (3)C24—C25—C26—C270.0 (2)
C5—C6—C7—C8−1.2 (2)C25—C26—C27—C28−0.3 (2)
C6—C7—C8—C31.0 (2)C26—C27—C28—C230.3 (2)
C6—C7—C8—C9−179.49 (15)C26—C27—C28—C29178.62 (15)
C4—C3—C8—C70.2 (2)C24—C23—C28—C270.0 (2)
C2—C3—C8—C7−179.38 (13)C22—C23—C28—C27178.75 (14)
C4—C3—C8—C9−179.49 (14)C24—C23—C28—C29−178.60 (13)
C2—C3—C8—C90.98 (16)C22—C23—C28—C290.11 (16)
C2—N1—C9—O19−177.88 (15)C22—N21—C29—O39−176.96 (15)
C10—N1—C9—O197.1 (3)C30—N21—C29—O39−6.4 (2)
C2—N1—C9—C82.12 (17)C22—N21—C29—C281.68 (17)
C10—N1—C9—C8−172.89 (14)C30—N21—C29—C28172.23 (13)
C7—C8—C9—O19−1.5 (3)C27—C28—C29—O39−1.0 (3)
C3—C8—C9—O19178.12 (16)C23—C28—C29—O39177.49 (16)
C7—C8—C9—N1178.52 (16)C27—C28—C29—N21−179.54 (16)
C3—C8—C9—N1−1.88 (17)C23—C28—C29—N21−1.06 (16)
C2—N1—C10—C11106.72 (18)C22—N21—C30—C31−107.89 (17)
C9—N1—C10—C11−78.9 (2)C29—N21—C30—C3182.75 (18)
N1—C10—C11—O12−16.2 (2)N21—C30—C31—O3218.2 (2)
N1—C10—C11—C13164.30 (14)N21—C30—C31—C33−164.23 (13)
O12—C11—C13—N143.1 (3)O32—C31—C33—N34−1.2 (2)
C10—C11—C13—N14−177.40 (15)C30—C31—C33—N34−178.61 (14)
O12—C11—C13—C17−178.50 (17)O32—C31—C33—C37177.80 (16)
C10—C11—C13—C171.0 (3)C30—C31—C33—C370.4 (2)
C17—C13—N14—C15−0.31 (18)C37—C33—N34—C35−0.45 (17)
C11—C13—N14—C15178.39 (15)C31—C33—N34—C35178.71 (14)
C17—C13—N14—C20179.46 (15)C37—C33—N34—C40−178.90 (15)
C11—C13—N14—C20−1.8 (3)C31—C33—N34—C400.3 (2)
C13—N14—C15—C160.3 (2)C33—N34—C35—C360.11 (19)
C20—N14—C15—C16−179.47 (16)C40—N34—C35—C36178.62 (15)
N14—C15—C16—C17−0.2 (2)N34—C35—C36—C370.3 (2)
N14—C13—C17—C160.19 (19)C35—C36—C37—C33−0.6 (2)
C11—C13—C17—C16−178.41 (16)N34—C33—C37—C360.62 (18)
C15—C16—C17—C130.0 (2)C31—C33—C37—C36−178.50 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5047).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Andersen, A. G. Jr & Exner, M. M. (1977). J. Org. Chem.42, 3952–3955.
  • Dräger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Katritzky, A. R., Suzuki, K., Singh, S. K. & He, H.-Y. (2003). J. Org. Chem.68, 5720–5723. [PubMed]
  • Massa, S., Di Santo, R. & Artico, M. (1990). J. Heterocycl. Chem.27, 1131–113.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography