PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2313.
Published online 2009 September 5. doi:  10.1107/S1600536809034345
PMCID: PMC2970459

N-(4-Bromo-2-methyl­phen­yl)pivalamide

Abstract

The conformation of the N—H bond in the title compound, C12H16BrNO, is syn to the ortho-methyl substituent. There are two unique molecules in the asymmetric unit. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules, forming infinite chains down [010].

Related literature

For a study of the effect of ring and side-chain substitution on the crystal structures of aromatic amides, see: Gowda et al. (2007 [triangle]). For related structures, see: Gowda et al. (2007a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2313-scheme1.jpg

Experimental

Crystal data

  • C12H16BrNO
  • M r = 270.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2313-efi1.jpg
  • a = 11.764 (3) Å
  • b = 19.584 (5) Å
  • c = 12.956 (3) Å
  • β = 117.877 (19)°
  • V = 2638.5 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.09 mm−1
  • T = 293 K
  • 0.42 × 0.37 × 0.32 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.357, T max = 0.438
  • 24481 measured reflections
  • 4634 independent reflections
  • 1875 reflections with I > 2σ(I)
  • R int = 0.113

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.211
  • S = 1.01
  • 4634 reflections
  • 271 parameters
  • 65 restraints
  • H-atom parameters constrained
  • Δρmax = 0.90 e Å−3
  • Δρmin = −0.70 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034345/at2861sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034345/at2861Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the effect of ring and side chain substitutions on the crystal structures of chemically and biologically important class of compounds such as aromatic amides (Gowda, Kozisek et al., 2007), We now report the the crystal structure of the title compound, (I).

As shown in Fig.1, the title compound includes both the ortho-methyl and the p-Br-substituted phenyl group and an imide group. The title compound, (I), (Fig. 1) is structural isomer of both the 2-chloro and the 3-chloro substituent in N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2007a) and N-(2,3-Dichlorophenyl)-2,2,2-trimethylacetamide (Gowda et al., 2007b). The conformation of the N–H bond in the title compound is syn to the ortho-methyl substituent, similar to that in both the 2-chloro and the 3-chloro-substituted amides, but in contrast to the anti conformation observed for the corresponding 3-chloro-substituted N-(3-Chlorophenyl)-2,2,2-trimethylacetamide (Gowda et al., 2007c). The amide H atom is involved in an intramolecular hydrogen bond with the O atom of the carbonyl group.

In the crystal structure, these molecules are linked into infinite one-dimensional chains by intermolecular N–H···O hydrogen bonds running along [010] direction (Fig. 2, Table 1).

Experimental

2,2,2-Trimethyl-N-(2-methylphenyl)acetamide (0.95 5 g, 5 mmol) was added slowly by cannulation to a stirred suspension of p-nitroaniline (0.690 g, 3 mmol) in chloroform (50 ml) at room temperature. After stirring for 2 h the solution was quenched with saturated aqueous sodium bicarbonate solution (20 ml) the layers were separated and the aqueous layer was extracted with chloroform, the combined organic extracts were washed with water (20 ml), dried (MgSO4) and evaporated under reduced pressure to give the crude product as viscous brown oil. Then purification by short column chromatography (chloroform) and recrystallization from chloroform gave the compound (I) as brown needles crystals (1.094 g, 81%).

Refinement

H atoms were treated as riding, with C—H distances in the range of 0.93–0.96 Å and N—H distances of 0.86 Å, and were refined as riding with Uiso(H) = 1.2Ueq(N and C in phenyl ring) and Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
One-dimensional structure of (I) along [010] direction, Hydrogen bonds are shown in the dashing line.

Crystal data

C12H16BrNOF(000) = 1104
Mr = 270.17Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3412 reflections
a = 11.764 (3) Åθ = 2.2–19.4°
b = 19.584 (5) ŵ = 3.09 mm1
c = 12.956 (3) ÅT = 293 K
β = 117.877 (19)°Block, colourless
V = 2638.5 (11) Å30.42 × 0.37 × 0.32 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer4634 independent reflections
Radiation source: fine-focus sealed tube1875 reflections with I > 2σ(I)
graphiteRint = 0.113
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −13→13
Tmin = 0.357, Tmax = 0.438k = −23→23
24481 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0858P)2 + 4.1364P] where P = (Fo2 + 2Fc2)/3
4634 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.90 e Å3
65 restraintsΔρmin = −0.70 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.96107 (9)0.07766 (6)1.22541 (8)0.0941 (5)
Br20.00476 (11)0.12629 (7)−0.17802 (9)0.1081 (5)
N10.4710 (6)0.0356 (3)0.7724 (5)0.0521 (16)
H1A0.4492−0.00410.74120.063*
N20.4775 (6)0.2083 (3)0.2649 (5)0.0665 (19)
H2B0.47770.24970.28710.080*
O10.4160 (5)0.1460 (3)0.7638 (5)0.0731 (17)
O20.5853 (6)0.1099 (3)0.3045 (5)0.089 (2)
C10.8081 (8)0.0605 (4)1.0861 (7)0.058 (2)
C20.6924 (8)0.0724 (4)1.0821 (6)0.054 (2)
H2A0.68840.08711.14860.065*
C30.5816 (8)0.0626 (4)0.9801 (6)0.053 (2)
H3A0.50240.06970.97800.064*
C40.5866 (7)0.0423 (3)0.8792 (6)0.0465 (19)
C50.7052 (8)0.0280 (4)0.8833 (6)0.052 (2)
C60.8141 (8)0.0384 (4)0.9878 (7)0.060 (2)
H6A0.89420.03030.99220.073*
C70.7118 (8)0.0065 (5)0.7749 (7)0.081 (3)
H7A0.7998−0.00130.79340.121*
H7B0.67640.04190.71710.121*
H7C0.6634−0.03480.74500.121*
C80.3938 (7)0.0895 (4)0.7178 (6)0.0503 (18)
C90.2783 (8)0.0769 (4)0.5992 (6)0.0594 (19)
C100.1890 (9)0.0268 (5)0.6154 (8)0.094 (3)
H10A0.16040.04620.66740.142*
H10B0.2341−0.01500.64780.142*
H10C0.11590.01780.54120.142*
C110.2083 (9)0.1434 (4)0.5504 (8)0.098 (3)
H11A0.18380.16330.60480.147*
H11B0.13280.13490.47770.147*
H11C0.26380.17430.53760.147*
C120.3226 (10)0.0449 (5)0.5156 (7)0.100 (3)
H12A0.37940.07590.50470.150*
H12B0.24910.03600.44160.150*
H12C0.36700.00290.54810.150*
C130.1525 (9)0.1490 (4)−0.0371 (7)0.062 (2)
C140.2695 (10)0.1463 (4)−0.0340 (7)0.070 (2)
H14A0.27660.1318−0.09910.084*
C150.3774 (8)0.1652 (4)0.0661 (7)0.067 (2)
H15A0.45760.16400.06840.080*
C160.3671 (8)0.1861 (4)0.1639 (7)0.053 (2)
C170.2495 (10)0.1873 (4)0.1621 (7)0.064 (2)
C180.1419 (9)0.1689 (4)0.0592 (8)0.068 (2)
H18A0.06120.17010.05580.081*
C190.2349 (10)0.2096 (5)0.2664 (7)0.093 (3)
H19A0.14610.20680.24830.139*
H19B0.26430.25580.28600.139*
H19C0.28510.18030.33140.139*
C200.5824 (9)0.1700 (5)0.3295 (8)0.074 (2)
C210.6956 (13)0.2023 (7)0.4300 (12)0.149 (3)
C220.8063 (12)0.1606 (6)0.4813 (11)0.152 (3)
H22A0.78600.11870.50750.228*
H22B0.87310.18400.54660.228*
H22C0.83500.15070.42470.228*
C230.7298 (12)0.2717 (6)0.3915 (11)0.152 (3)
H23A0.80040.29260.45730.228*
H23B0.65650.30150.36280.228*
H23C0.75340.26370.33100.228*
C240.6485 (12)0.2294 (6)0.5109 (11)0.154 (3)
H24A0.62430.19210.54450.230*
H24B0.57520.25830.46830.230*
H24C0.71550.25530.57190.230*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0669 (7)0.1288 (10)0.0607 (6)−0.0185 (6)0.0082 (5)−0.0030 (6)
Br20.0852 (8)0.1378 (11)0.0688 (7)−0.0078 (7)0.0089 (6)−0.0144 (7)
N10.059 (4)0.042 (4)0.045 (4)0.005 (3)0.016 (3)−0.001 (3)
N20.073 (5)0.048 (4)0.059 (4)0.004 (4)0.014 (4)−0.010 (4)
O10.082 (4)0.042 (3)0.064 (3)0.003 (3)0.008 (3)−0.005 (3)
O20.096 (5)0.045 (4)0.084 (4)0.010 (3)0.006 (4)−0.018 (3)
C10.062 (6)0.056 (5)0.053 (5)0.006 (4)0.024 (4)0.005 (4)
C20.063 (6)0.059 (5)0.037 (4)0.003 (4)0.021 (4)0.000 (4)
C30.055 (5)0.055 (5)0.048 (5)0.001 (4)0.024 (4)−0.001 (4)
C40.053 (5)0.037 (4)0.043 (5)0.003 (4)0.017 (4)0.001 (4)
C50.056 (6)0.053 (5)0.049 (5)0.000 (4)0.026 (4)−0.004 (4)
C60.047 (5)0.068 (6)0.066 (6)0.002 (4)0.026 (5)0.008 (5)
C70.078 (7)0.100 (7)0.083 (6)−0.002 (5)0.052 (6)−0.023 (6)
C80.059 (4)0.047 (5)0.044 (4)0.000 (4)0.023 (3)−0.003 (4)
C90.069 (5)0.049 (4)0.044 (4)0.001 (3)0.013 (3)−0.002 (3)
C100.078 (6)0.100 (7)0.081 (6)−0.023 (5)0.016 (5)−0.001 (5)
C110.093 (7)0.069 (5)0.072 (6)0.015 (5)−0.010 (5)0.001 (4)
C120.120 (8)0.120 (7)0.050 (5)0.026 (6)0.031 (5)−0.012 (5)
C130.072 (7)0.060 (6)0.050 (5)−0.003 (5)0.026 (5)0.000 (4)
C140.089 (7)0.071 (6)0.048 (5)0.011 (5)0.031 (5)−0.004 (4)
C150.066 (6)0.070 (6)0.063 (6)0.007 (5)0.029 (5)−0.011 (5)
C160.057 (6)0.038 (5)0.057 (5)0.006 (4)0.020 (5)0.001 (4)
C170.095 (7)0.049 (5)0.048 (5)−0.012 (5)0.033 (5)−0.003 (4)
C180.074 (6)0.069 (6)0.074 (6)−0.010 (5)0.045 (6)−0.002 (5)
C190.118 (8)0.112 (8)0.069 (6)−0.025 (7)0.061 (6)−0.019 (6)
C200.087 (6)0.054 (5)0.072 (5)0.005 (5)0.029 (5)−0.004 (4)
C210.125 (5)0.105 (5)0.136 (5)−0.001 (4)−0.006 (4)−0.032 (4)
C220.126 (6)0.106 (5)0.138 (6)0.000 (4)−0.010 (4)−0.032 (4)
C230.126 (6)0.108 (5)0.140 (6)−0.004 (4)−0.007 (4)−0.029 (4)
C240.129 (6)0.112 (5)0.137 (6)−0.002 (4)−0.006 (4)−0.032 (4)

Geometric parameters (Å, °)

Br1—C11.889 (8)C11—H11B0.9600
Br2—C131.894 (8)C11—H11C0.9600
N1—C81.355 (9)C12—H12A0.9600
N1—C41.422 (9)C12—H12B0.9600
N1—H1A0.8600C12—H12C0.9600
N2—C201.349 (10)C13—C141.359 (11)
N2—C161.413 (9)C13—C181.368 (11)
N2—H2B0.8600C14—C151.375 (11)
O1—C81.225 (8)C14—H14A0.9300
O2—C201.226 (9)C15—C161.389 (11)
C1—C21.358 (10)C15—H15A0.9300
C1—C61.377 (11)C16—C171.374 (11)
C2—C31.368 (10)C17—C181.390 (11)
C2—H2A0.9300C17—C191.503 (11)
C3—C41.393 (10)C18—H18A0.9300
C3—H3A0.9300C19—H19A0.9600
C4—C51.399 (10)C19—H19B0.9600
C5—C61.377 (10)C19—H19C0.9600
C5—C71.503 (10)C20—C211.499 (14)
C6—H6A0.9300C21—C221.412 (15)
C7—H7A0.9600C21—C241.494 (18)
C7—H7B0.9600C21—C231.564 (17)
C7—H7C0.9600C22—H22A0.9600
C8—C91.521 (10)C22—H22B0.9600
C9—C111.513 (10)C22—H22C0.9600
C9—C101.522 (11)C23—H23A0.9600
C9—C121.539 (11)C23—H23B0.9600
C10—H10A0.9600C23—H23C0.9600
C10—H10B0.9600C24—H24A0.9600
C10—H10C0.9600C24—H24B0.9600
C11—H11A0.9600C24—H24C0.9600
C8—N1—C4122.7 (6)C9—C12—H12C109.5
C8—N1—H1A118.7H12A—C12—H12C109.5
C4—N1—H1A118.7H12B—C12—H12C109.5
C20—N2—C16125.6 (7)C14—C13—C18120.5 (8)
C20—N2—H2B117.2C14—C13—Br2118.6 (7)
C16—N2—H2B117.2C18—C13—Br2120.8 (7)
C2—C1—C6120.1 (8)C13—C14—C15119.5 (8)
C2—C1—Br1119.7 (6)C13—C14—H14A120.3
C6—C1—Br1120.1 (7)C15—C14—H14A120.3
C1—C2—C3119.9 (7)C14—C15—C16120.3 (8)
C1—C2—H2A120.1C14—C15—H15A119.8
C3—C2—H2A120.1C16—C15—H15A119.8
C2—C3—C4120.5 (8)C17—C16—C15120.4 (8)
C2—C3—H3A119.7C17—C16—N2119.5 (8)
C4—C3—H3A119.7C15—C16—N2120.1 (8)
C3—C4—C5120.0 (7)C16—C17—C18118.0 (8)
C3—C4—N1119.9 (7)C16—C17—C19121.8 (8)
C5—C4—N1120.1 (7)C18—C17—C19120.1 (9)
C6—C5—C4117.5 (7)C13—C18—C17121.2 (8)
C6—C5—C7122.0 (8)C13—C18—H18A119.4
C4—C5—C7120.5 (7)C17—C18—H18A119.4
C5—C6—C1121.9 (8)C17—C19—H19A109.5
C5—C6—H6A119.0C17—C19—H19B109.5
C1—C6—H6A119.0H19A—C19—H19B109.5
C5—C7—H7A109.5C17—C19—H19C109.5
C5—C7—H7B109.5H19A—C19—H19C109.5
H7A—C7—H7B109.5H19B—C19—H19C109.5
C5—C7—H7C109.5O2—C20—N2120.0 (8)
H7A—C7—H7C109.5O2—C20—C21120.7 (9)
H7B—C7—H7C109.5N2—C20—C21119.2 (9)
O1—C8—N1120.7 (7)C22—C21—C24116.0 (13)
O1—C8—C9121.6 (7)C22—C21—C20114.5 (11)
N1—C8—C9117.7 (7)C24—C21—C20106.8 (12)
C11—C9—C8109.7 (6)C22—C21—C23109.6 (13)
C11—C9—C10109.6 (8)C24—C21—C2398.6 (10)
C8—C9—C10108.3 (6)C20—C21—C23110.2 (10)
C11—C9—C12110.7 (7)C21—C22—H22A109.5
C8—C9—C12109.9 (7)C21—C22—H22B109.5
C10—C9—C12108.5 (7)H22A—C22—H22B109.5
C9—C10—H10A109.5C21—C22—H22C109.5
C9—C10—H10B109.5H22A—C22—H22C109.5
H10A—C10—H10B109.5H22B—C22—H22C109.5
C9—C10—H10C109.5C21—C23—H23A109.5
H10A—C10—H10C109.5C21—C23—H23B109.5
H10B—C10—H10C109.5H23A—C23—H23B109.5
C9—C11—H11A109.5C21—C23—H23C109.5
C9—C11—H11B109.5H23A—C23—H23C109.5
H11A—C11—H11B109.5H23B—C23—H23C109.5
C9—C11—H11C109.5C21—C24—H24A109.5
H11A—C11—H11C109.5C21—C24—H24B109.5
H11B—C11—H11C109.5H24A—C24—H24B109.5
C9—C12—H12A109.5C21—C24—H24C109.5
C9—C12—H12B109.5H24A—C24—H24C109.5
H12A—C12—H12B109.5H24B—C24—H24C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.142.989 (8)170
N2—H2B···O1ii0.862.142.943 (8)155

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2861).

References

  • Bruker (2001). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2631–o2632.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3788.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2331–o2332.
  • Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o1983–o1984.
  • Sheldrick, G. M. (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography