PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1209.
Published online 2009 September 12. doi:  10.1107/S160053680903637X
PMCID: PMC2970455

(N,N-Diethyl­dithio­carbamato-κ2 S,S′)iodido(1,10-phenanthroline-κ2 N,N′)copper(II)

Abstract

The copper(II) atom in the title compound, [Cu(C5H10NS2)I(C12H8N2)], is chelated by the N-heterocycle and the dithio­carbamate anion in a slightly distorted tetragonal coordination. The tetragonal-pyramidal coorination is completed by the iodine atom in the apical position. One ethyl group is disordered over two positions with site occupancies of 0.31 (2) and 0.69 (2).

Related literature

For the crystal structures of other N,N′-chelated dithio­carbamatocopper adducts of N-heterocycles, see: Fan & Wu (2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1209-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5H10NS2)I(C12H8N2)]
  • M r = 518.90
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1209-efi1.jpg
  • a = 15.357 (5) Å
  • b = 9.252 (3) Å
  • c = 14.153 (5) Å
  • β = 103.741 (5)°
  • V = 1953.3 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.92 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan CrystalClear (Rigaku, 2007 [triangle]) T min = 0.593, T max = 0.759
  • 14774 measured reflections
  • 4470 independent reflections
  • 3666 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.116
  • S = 0.93
  • 4470 reflections
  • 237 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903637X/bt5056sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903637X/bt5056Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Young Talent Fund of Fujian Province (No. 2007 F3060).

supplementary crystallographic information

Experimental

A mixture of copper(II) acetate hydrate (0.08 g, 0.4 mmol), sodium diethyldithiocarbamate trihydrate (0.09 g, 0.4 mmol), 1,10-phenanthroline (0.08 g 0.4 mmol) and sodium iodide dihydrate (0.07 g, 0.4 mmol) was stirred in DMF (15 ml). 2-Propanol was diffused into the solution; crystals were isolated after several days, yielding single crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

One ethyl radical are disordered over two positions with site occupation factors of 0.31 (2):0.69 (2).

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of CuI(C12H8N2)(C5H10NS2) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The minor occupied sites of the disordered ethyl chain is not shown.

Crystal data

[Cu(C5H10NS2)I(C12H8N2)]F(000) = 1020
Mr = 518.90Dx = 1.764 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4020 reflections
a = 15.357 (5) Åθ = 3.1–27.5°
b = 9.252 (3) ŵ = 2.92 mm1
c = 14.153 (5) ÅT = 293 K
β = 103.741 (5)°Prism, black
V = 1953.3 (11) Å30.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Rigaku Mercury diffractometer4470 independent reflections
Radiation source: fine-focus sealed tube3666 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan CrystalClear (Rigaku, 2007)h = −15→19
Tmin = 0.593, Tmax = 0.759k = −12→12
14774 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.93w = 1/[σ2(Fo2) + (0.0613P)2 + 3.3876P] where P = (Fo2 + 2Fc2)/3
4470 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.73 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.28574 (4)0.83518 (6)0.45653 (4)0.04622 (16)
I10.17818 (2)0.58393 (3)0.47531 (2)0.05255 (13)
S10.37150 (9)0.78291 (19)0.34872 (9)0.0680 (4)
S20.42493 (9)0.78293 (18)0.55491 (9)0.0645 (4)
N10.5328 (3)0.6852 (6)0.4466 (3)0.0682 (13)
N20.1835 (2)0.9450 (4)0.3643 (2)0.0418 (8)
N30.2373 (2)0.9449 (4)0.5572 (2)0.0412 (8)
C10.4550 (3)0.7443 (5)0.4495 (3)0.0506 (11)
C20.5523 (8)0.6281 (16)0.3563 (8)0.078 (4)0.69 (2)
H2A0.57860.53270.36920.094*0.69 (2)
H2B0.49640.61800.30750.094*0.69 (2)
C2'0.5643 (15)0.726 (3)0.3480 (16)0.065 (7)0.31 (2)
H2D0.52310.79180.30660.077*0.31 (2)
H2E0.62460.76450.36170.077*0.31 (2)
C3'0.559 (2)0.569 (3)0.305 (2)0.113 (13)0.31 (2)
H3D0.61810.52920.31510.170*0.31 (2)
H3E0.53200.57250.23610.170*0.31 (2)
H3F0.52320.50920.33620.170*0.31 (2)
C30.6108 (13)0.716 (2)0.3191 (10)0.150 (8)0.69 (2)
H3A0.61610.67920.25740.224*0.69 (2)
H3B0.66870.71720.36360.224*0.69 (2)
H3C0.58740.81300.31090.224*0.69 (2)
C40.6012 (3)0.6512 (6)0.5367 (4)0.0620 (13)
H4A0.63460.56640.52570.074*
H4B0.57130.62840.58810.074*
C50.6644 (4)0.7723 (7)0.5687 (5)0.0799 (18)
`H5B0.63130.85860.57440.120*
H5A0.69940.78740.52170.120*
H5C0.70330.74950.63060.120*
C60.1575 (4)0.9422 (5)0.2673 (3)0.0509 (11)
H60.19140.89070.23250.061*
C70.0802 (4)1.0150 (5)0.2165 (3)0.0560 (12)
H70.06291.00930.14900.067*
C80.0309 (3)1.0935 (5)0.2656 (4)0.0518 (11)
H8−0.02061.14130.23220.062*
C90.0586 (3)1.1019 (4)0.3680 (3)0.0419 (9)
C100.1346 (3)1.0248 (4)0.4133 (3)0.0375 (8)
C110.0123 (3)1.1834 (5)0.4272 (4)0.0520 (11)
H11−0.03841.23580.39710.062*
C120.0400 (3)1.1862 (5)0.5249 (4)0.0512 (11)
H120.00851.24080.56090.061*
C130.1176 (3)1.1058 (4)0.5741 (3)0.0425 (9)
C140.1639 (3)1.0261 (4)0.5176 (3)0.0383 (9)
C150.1484 (4)1.0955 (5)0.6757 (3)0.0521 (11)
H150.11971.14630.71620.062*
C160.2204 (4)1.0107 (6)0.7144 (3)0.0558 (12)
H160.24031.00120.78150.067*
C170.2640 (3)0.9384 (5)0.6528 (3)0.0489 (11)
H170.31420.88300.68020.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0399 (3)0.0589 (3)0.0391 (3)0.0118 (2)0.0078 (2)−0.0028 (2)
I10.0471 (2)0.0563 (2)0.0574 (2)0.00439 (14)0.01878 (15)0.00145 (13)
S10.0460 (7)0.1134 (12)0.0443 (6)0.0092 (7)0.0103 (5)−0.0187 (7)
S20.0442 (7)0.1012 (11)0.0461 (6)0.0208 (7)0.0069 (5)−0.0011 (6)
N10.040 (2)0.098 (4)0.067 (3)0.007 (2)0.015 (2)−0.017 (2)
N20.040 (2)0.0471 (19)0.0377 (18)0.0040 (16)0.0087 (15)0.0007 (14)
N30.0367 (19)0.0460 (19)0.0403 (18)0.0073 (15)0.0080 (15)0.0029 (14)
C10.041 (2)0.059 (3)0.052 (3)−0.001 (2)0.013 (2)−0.013 (2)
C20.073 (7)0.090 (9)0.076 (7)0.025 (6)0.027 (5)−0.016 (7)
C2'0.055 (12)0.071 (15)0.079 (14)0.012 (10)0.038 (10)−0.008 (11)
C3'0.18 (3)0.085 (19)0.090 (19)0.055 (19)0.072 (19)0.024 (14)
C30.161 (16)0.207 (19)0.099 (10)−0.075 (14)0.066 (10)0.007 (10)
C40.044 (3)0.057 (3)0.086 (4)0.004 (2)0.017 (3)0.002 (3)
C50.063 (4)0.087 (4)0.083 (4)−0.018 (3)0.006 (3)0.008 (3)
C60.059 (3)0.055 (3)0.039 (2)0.001 (2)0.012 (2)−0.0020 (19)
C70.064 (3)0.057 (3)0.040 (2)0.002 (3)−0.002 (2)0.006 (2)
C80.051 (3)0.043 (2)0.056 (3)0.004 (2)0.001 (2)0.010 (2)
C90.039 (2)0.039 (2)0.046 (2)−0.0002 (18)0.0063 (18)0.0026 (17)
C100.036 (2)0.0368 (19)0.039 (2)−0.0013 (17)0.0071 (16)0.0020 (16)
C110.043 (3)0.044 (2)0.068 (3)0.008 (2)0.012 (2)0.003 (2)
C120.048 (3)0.042 (2)0.064 (3)0.006 (2)0.015 (2)−0.008 (2)
C130.039 (2)0.039 (2)0.051 (2)−0.0017 (18)0.0134 (19)−0.0040 (17)
C140.039 (2)0.0357 (19)0.041 (2)−0.0028 (17)0.0105 (17)−0.0018 (16)
C150.058 (3)0.056 (3)0.047 (2)−0.002 (2)0.021 (2)−0.011 (2)
C160.066 (3)0.064 (3)0.036 (2)−0.001 (3)0.011 (2)−0.004 (2)
C170.052 (3)0.058 (3)0.035 (2)0.008 (2)0.0066 (19)0.0001 (18)

Geometric parameters (Å, °)

Cu1—N32.030 (4)C4—C51.481 (8)
Cu1—N22.057 (3)C4—H4A0.9700
Cu1—S12.2916 (15)C4—H4B0.9700
Cu1—S22.3082 (14)C5—`H5B0.9600
Cu1—I12.9002 (10)C5—H5A0.9600
S1—C11.714 (5)C5—H5C0.9600
S2—C11.701 (5)C6—C71.405 (7)
N1—C11.324 (6)C6—H60.9300
N1—C21.477 (12)C7—C81.354 (7)
N1—C41.481 (7)C7—H70.9300
N1—C2'1.62 (2)C8—C91.412 (6)
N2—C61.335 (5)C8—H80.9300
N2—C101.355 (5)C9—C101.388 (6)
N3—C171.319 (5)C9—C111.435 (6)
N3—C141.359 (5)C10—C141.438 (5)
C2—C31.41 (2)C11—C121.347 (7)
C2—H2A0.9700C11—H110.9300
C2—H2B0.9700C12—C131.438 (6)
C2'—C3'1.57 (4)C12—H120.9300
C2'—H2D0.9700C13—C141.400 (6)
C2'—H2E0.9700C13—C151.406 (6)
C3'—H3D0.9600C15—C161.360 (7)
C3'—H3E0.9600C15—H150.9300
C3'—H3F0.9600C16—C171.390 (6)
C3—H3A0.9600C16—H160.9300
C3—H3B0.9600C17—H170.9300
C3—H3C0.9600
N3—Cu1—N281.17 (14)H3B—C3—H3C109.5
N3—Cu1—S1159.66 (12)N1—C4—C5112.4 (5)
N2—Cu1—S198.89 (11)N1—C4—H4A109.1
N3—Cu1—S297.04 (11)C5—C4—H4A109.1
N2—Cu1—S2160.83 (11)N1—C4—H4B109.1
S1—Cu1—S276.18 (5)C5—C4—H4B109.1
N3—Cu1—I191.42 (11)H4A—C4—H4B107.9
N2—Cu1—I195.08 (11)C4—C5—`H5B109.5
S1—Cu1—I1108.77 (5)C4—C5—H5A109.5
S2—Cu1—I1104.06 (5)`H5B—C5—H5A109.5
C1—S1—Cu185.68 (16)C4—C5—H5C109.5
C1—S2—Cu185.43 (17)`H5B—C5—H5C109.5
C1—N1—C2123.0 (6)H5A—C5—H5C109.5
C1—N1—C4121.4 (4)N2—C6—C7121.8 (5)
C2—N1—C4114.9 (6)N2—C6—H6119.1
C1—N1—C2'112.7 (9)C7—C6—H6119.1
C2—N1—C2'34.6 (8)C8—C7—C6120.2 (4)
C4—N1—C2'119.6 (9)C8—C7—H7119.9
C6—N2—C10118.0 (4)C6—C7—H7119.9
C6—N2—Cu1129.8 (3)C7—C8—C9119.1 (4)
C10—N2—Cu1112.1 (3)C7—C8—H8120.4
C17—N3—C14118.3 (4)C9—C8—H8120.4
C17—N3—Cu1128.4 (3)C10—C9—C8117.4 (4)
C14—N3—Cu1113.1 (3)C10—C9—C11118.7 (4)
N1—C1—S2123.3 (4)C8—C9—C11123.9 (4)
N1—C1—S1124.2 (4)N2—C10—C9123.4 (4)
S2—C1—S1112.4 (3)N2—C10—C14117.0 (4)
C3—C2—N1113.3 (14)C9—C10—C14119.6 (4)
C3—C2—H2A108.9C12—C11—C9122.0 (4)
N1—C2—H2A108.9C12—C11—H11119.0
C3—C2—H2B108.9C9—C11—H11119.0
N1—C2—H2B108.9C11—C12—C13120.7 (4)
H2A—C2—H2B107.7C11—C12—H12119.7
C3'—C2'—N197 (2)C13—C12—H12119.7
C3'—C2'—H2D112.3C14—C13—C15117.1 (4)
N1—C2'—H2D112.3C14—C13—C12118.1 (4)
C3'—C2'—H2E112.3C15—C13—C12124.7 (4)
N1—C2'—H2E112.3N3—C14—C13122.6 (4)
H2D—C2'—H2E109.9N3—C14—C10116.5 (4)
C2'—C3'—H3D109.5C13—C14—C10120.9 (4)
C2'—C3'—H3E109.5C16—C15—C13119.6 (4)
H3D—C3'—H3E109.5C16—C15—H15120.2
C2'—C3'—H3F109.5C13—C15—H15120.2
H3D—C3'—H3F109.5C15—C16—C17119.5 (4)
H3E—C3'—H3F109.5C15—C16—H16120.3
C2—C3—H3A109.5C17—C16—H16120.3
C2—C3—H3B109.5N3—C17—C16122.9 (4)
H3A—C3—H3B109.5N3—C17—H17118.6
C2—C3—H3C109.5C16—C17—H17118.6
H3A—C3—H3C109.5
N3—Cu1—S1—C176.2 (4)C1—N1—C4—C5−90.7 (7)
N2—Cu1—S1—C1164.8 (2)C2—N1—C4—C598.3 (9)
S2—Cu1—S1—C13.66 (18)C2'—N1—C4—C559.5 (13)
I1—Cu1—S1—C1−96.74 (18)C10—N2—C6—C7−2.1 (7)
N3—Cu1—S2—C1−164.2 (2)Cu1—N2—C6—C7174.0 (4)
N2—Cu1—S2—C1−80.8 (4)N2—C6—C7—C81.5 (8)
S1—Cu1—S2—C1−3.69 (18)C6—C7—C8—C90.5 (8)
I1—Cu1—S2—C1102.57 (18)C7—C8—C9—C10−1.7 (7)
N3—Cu1—N2—C6−179.5 (4)C7—C8—C9—C11179.1 (5)
S1—Cu1—N2—C621.1 (4)C6—N2—C10—C90.8 (6)
S2—Cu1—N2—C694.5 (5)Cu1—N2—C10—C9−175.9 (3)
I1—Cu1—N2—C6−88.8 (4)C6—N2—C10—C14−180.0 (4)
N3—Cu1—N2—C10−3.2 (3)Cu1—N2—C10—C143.2 (5)
S1—Cu1—N2—C10−162.6 (3)C8—C9—C10—N21.1 (6)
S2—Cu1—N2—C10−89.2 (4)C11—C9—C10—N2−179.7 (4)
I1—Cu1—N2—C1087.5 (3)C8—C9—C10—C14−178.1 (4)
N2—Cu1—N3—C17177.5 (4)C11—C9—C10—C141.2 (6)
S1—Cu1—N3—C17−90.7 (5)C10—C9—C11—C12−0.5 (7)
S2—Cu1—N3—C17−21.7 (4)C8—C9—C11—C12178.7 (5)
I1—Cu1—N3—C1782.6 (4)C9—C11—C12—C13−0.5 (7)
N2—Cu1—N3—C142.6 (3)C11—C12—C13—C140.8 (7)
S1—Cu1—N3—C1494.4 (4)C11—C12—C13—C15−176.1 (5)
S2—Cu1—N3—C14163.3 (3)C17—N3—C14—C131.8 (6)
I1—Cu1—N3—C14−92.3 (3)Cu1—N3—C14—C13177.3 (3)
C2—N1—C1—S2168.7 (8)C17—N3—C14—C10−177.2 (4)
C4—N1—C1—S2−1.5 (8)Cu1—N3—C14—C10−1.7 (5)
C2'—N1—C1—S2−153.6 (11)C15—C13—C14—N3−1.9 (6)
C2—N1—C1—S1−8.1 (10)C12—C13—C14—N3−179.0 (4)
C4—N1—C1—S1−178.4 (4)C15—C13—C14—C10177.0 (4)
C2'—N1—C1—S129.5 (12)C12—C13—C14—C10−0.1 (6)
Cu1—S2—C1—N1−172.0 (5)N2—C10—C14—N3−1.1 (5)
Cu1—S2—C1—S15.2 (3)C9—C10—C14—N3178.1 (4)
Cu1—S1—C1—N1172.0 (5)N2—C10—C14—C13179.9 (4)
Cu1—S1—C1—S2−5.2 (3)C9—C10—C14—C13−0.9 (6)
C1—N1—C2—C3106.4 (13)C14—C13—C15—C160.1 (7)
C4—N1—C2—C3−82.7 (14)C12—C13—C15—C16177.0 (5)
C2'—N1—C2—C323.9 (18)C13—C15—C16—C171.7 (7)
C1—N1—C2'—C3'−114.7 (15)C14—N3—C17—C160.1 (7)
C2—N1—C2'—C3'1.0 (16)Cu1—N3—C17—C16−174.6 (4)
C4—N1—C2'—C3'92.7 (17)C15—C16—C17—N3−1.8 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5056).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Fan, L.-Q. & Wu, J.-H. (2008). Acta Cryst. E64, m639. [PMC free article] [PubMed]
  • Fan, L.-Q. & Wu, J.-H. (2009). Acta Cryst. E65, m319. [PMC free article] [PubMed]
  • Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography