PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2485.
Published online 2009 September 19. doi:  10.1107/S1600536809036708
PMCID: PMC2970452

N 1,N 2-Bis­(2,6-di­methyl­phen­yl)-N 1-hydroxyformamidine N,N′-bis­(2,6-dimethyl­phen­yl)-N-oxidoformamidinium dichloro­methane solvate

Abstract

The title compound, 2C17H20N2O·CH2Cl2, was obtained by N-oxidation of the parent formamidine with m-chloro-peroxy­benzoic acid (m-CPBA). This is the first use of the above-mentioned synthetic route for the preparation of hydroxy­amidines. The title compound crystallizes as a cyclic dimer resulting from the presence of O—H(...)O and N—H(...)N hydrogen bonds.

Related literature

For synthesis, properties and applications of hydroxy­amidines and the parent amidines, see: Krahulic et al. (2005 [triangle]); Hirano et al. (2009 [triangle]); Coles (2006 [triangle]); Cotton et al. (2003 [triangle]); Chartrand & Hanan (2008 [triangle]); Briggs et al. (1976 [triangle]); Krajete et al. (2004 [triangle]); Kharsan & Mishra (1980 [triangle]); Satyanarayana & Mishra (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2485-scheme1.jpg

Experimental

Crystal data

  • 2C17H20N2O·CH2Cl2
  • M r = 621.63
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2485-efi1.jpg
  • a = 16.360 (5) Å
  • b = 18.137 (6) Å
  • c = 11.421 (4) Å
  • V = 3388.6 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 200 K
  • 0.18 × 0.09 × 0.05 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.806, T max = 0.989
  • 59541 measured reflections
  • 6211 independent reflections
  • 4233 reflections with I > 2σ(I)
  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.136
  • S = 1.03
  • 6211 reflections
  • 405 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.34 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2931 Friedel Pairs
  • Flack parameter: 0.06 (9)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: UdMX (Maris, 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036708/ez2181sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036708/ez2181Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada and the Université de Montréal for financial assistance.

supplementary crystallographic information

Comment

Hydroxyamidines have long been known to act as bidentate ligands that form stable 5-membered chelate rings with metal ions, and have been extensively studied as sequestrating agents for metals and in pharmacology (Kharsan & Mishra, 1980; Briggs et al., 1976). However, their role as ligands for coordination and supramolecular chemistry has so far received scarce attention (Krajete et al., 2004). This is somewhat surprising as they show good electronic delocalization and interesting design possibilities involving both the coordination geometry and the functionalization of the backbone. These properties make hydroxyamidines and their complexes interesting candidates for incorporation into supramolecular assemblies. In this paper we studied the behaviour of the title compound, comprising the ligand N-hydroxy-N,N'-bis(2,6-dimethylphenyl)formamidine in the solid state. As exemplified by Fig. 1, amidines present two sites for H-bonding interaction: the hydroxy group and the N sp2 as H-bond donor and acceptor, respectively. It is therefore plausible to expect that the molecule will dimerize in a cyclic self-complementary H-bonded O–H···N fashion.

The asymmetric unit of compound 1 presents two inequivalent molecules of 1 and one molecule of dichloromethane. The two molecules of the ligand unexpectedly form a cyclic dimer through a pair of H-bonding interactions O–H···O and one N–H···N. In the dimer, one formamidine is present in its neutral form, N=C–N–OH, while the second appears as the zwitterionic form, with the negative charge on the oxygen and the positive charge delocalized between the two nitrogen atoms, leading to two resonance forms: NH+=C–N–O- and NH–C–N+=O- (see scheme). Hence, the resulting bridges can be best described as O–H···O- and N–H···N H-bonds. The O–H···O- interaction has been previously reported in the analogous crystal structure of a benzamidine system by Krajete et al. (2004). In that case, however, the ligand dimerizes via a single H-bond. The assignment of neutral and zwitterionic moiety [N(4)–C(2)–N(3)–O(2) and N(2)–C(1)–N(1)–O(1), respectively] is consistent with the position of the hydrogen atoms observed in the crystal structure, however, none of the N–C distances has a clear character of single or double bond, ranging from 1.291 to 1.330 Å.

The planes of all the aromatic rings are tilted with respect to the O–N–C–N plane: in the neutral molecule the tilt angles are 70.5 (1) and 80.2 (1)°, while in the zwitterionic molecule these range from 87.6 (1) to 87.7 (1)°. This conformation is probably achieved to release the O–N–C–N backbone from the steric bulk of the methyl groups on the 2,6 position of the phenyl groups, and was also noticed in the structures of benzamidines studied by Krajete et al.(2004). The 10-atom cycle formed by the two molecules exhibits a highly distorted geometry, the planes of the N–C–N–O backbones forming an angle of 42.4 (1)°, while for the O–H···O- H-bond the torsion angle N(1)–O(1)···O(2)–N(3) is 157.4 (2)°.

Structural and photophysical studies of the coordination compounds of the formamidine here described are currently in progress and will be subject of a future publication.

Experimental

The title compound was obtained by N-oxidation with m-chloro-peroxybenzoic acid (m-CPBA) of the parent formamidine; the latter was prepared according to the procedure of Krahulic et al. (2005). To a solution of N,N'-bis(2,6-dimethylphenyl)-formamidine (1.0 g, 3.96 mmol) in 20 ml of dichloromethane, was added dropwise a solution of m-CPBA (0.9 g, 3.96 mmol) in 20 ml of the same solvent. The reaction mixture was stirred for 30 minutes at room temperature and successively washed with an aqueous solution of K2CO3 (5%) (2 x 25 ml) and of saturated NaHCO3 (2 x 25 ml). The combined organic fractions were dried over anhydrous Na2SO4 and filtered. The solvent was removed by evaporation, to afford a crude off white product. Recrystallization in DCM/ hexane (1:1) at -10°C yielded colourless X-ray quality crystals. Yield 92%.

1H NMR (DMSO-d6, 300 MHz, δ, p.p.m.): 7.80 (s, 1H), 7.20–7.10 (m, 3H), 7.00 (d, 2H), 6.88 (t, 1H), 3.50 (bs, 1H, OH), 2.31 (s,6H), 2.16 (s, 6H).

Refinement

N-bound and O-bound H atoms were located in a difference Fourier map and refined. All other H atoms were placed in calculated positions, with C–H = 0.93–0.99 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.
A schematic view of the N-hydroxy-N,N'-bis(2,6-dimethylphenyl)formamidine ligand.
Fig. 2.
The molecular structure of the title compound, 1. Displacement ellipsoids are shown at 30% probability levels. CH2Cl2 is not shown for clarity.

Crystal data

2C17H20N2O·CH2Cl2F(000) = 1320
Mr = 621.63Dx = 1.218 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6035 reflections
a = 16.360 (5) Åθ = 2.3–19.7°
b = 18.137 (6) ŵ = 0.23 mm1
c = 11.421 (4) ÅT = 200 K
V = 3388.6 (18) Å3Needle, colorless
Z = 40.18 × 0.09 × 0.05 mm

Data collection

Bruker APEXII diffractometer6211 independent reflections
Radiation source: X-ray sealed tube4233 reflections with I > 2σ(I)
GraphiteRint = 0.082
Detector resolution: 8.3 pixels mm-1θmax = 25.4°, θmin = 1.7°
ω scansh = −19→19
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −21→21
Tmin = 0.806, Tmax = 0.989l = −13→13
59541 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136w = 1/[σ2(Fo2) + (0.067P)2 + 0.3477P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6211 reflectionsΔρmax = 0.24 e Å3
405 parametersΔρmin = −0.34 e Å3
1 restraintAbsolute structure: Flack (1983), 2931 Friedel Pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (9)

Special details

Experimental. X-ray crystallographic data for 1 were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker smart diffractometer equiped with an APEX II CCD Detector, a graphite monochromator. The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.79719 (8)0.13777 (9)0.47507 (13)0.1095 (5)
Cl20.62760 (8)0.15036 (11)0.53563 (14)0.1307 (7)
O10.66822 (11)0.09653 (12)0.9961 (2)0.0514 (6)
O20.62942 (12)0.16297 (13)0.1805 (2)0.0495 (6)
N10.74883 (14)0.10368 (14)0.9705 (2)0.0421 (6)
N20.73452 (18)0.22848 (14)0.9479 (2)0.0426 (6)
N30.54544 (14)0.17397 (14)0.1661 (2)0.0430 (6)
N40.56736 (14)0.25572 (13)0.0124 (2)0.0406 (6)
C10.77938 (18)0.16788 (18)0.9475 (3)0.0428 (7)
H1A0.83600.17160.92980.051*
C20.52018 (18)0.22085 (17)0.0842 (3)0.0400 (7)
H2A0.46300.22930.07800.048*
C110.79546 (18)0.03579 (17)0.9723 (3)0.0460 (8)
C120.8263 (2)0.01206 (19)1.0789 (3)0.0545 (9)
C130.8652 (2)−0.0568 (2)1.0819 (4)0.0694 (11)
H130.8860−0.07531.15380.083*
C140.8734 (2)−0.0968 (2)0.9828 (5)0.0807 (13)
H140.9015−0.14260.98620.097*
C150.8425 (2)−0.0736 (2)0.8775 (5)0.0732 (12)
H150.8488−0.10380.81010.088*
C160.80118 (19)−0.0047 (2)0.8679 (3)0.0569 (9)
C170.8183 (3)0.0565 (2)1.1877 (4)0.0713 (11)
H17A0.83340.02631.25540.107*
H17B0.76160.07321.19620.107*
H17C0.85450.09951.18320.107*
C180.7663 (3)0.0240 (3)0.7564 (4)0.0731 (12)
H18A0.70660.02580.76250.110*
H18B0.7819−0.00870.69180.110*
H18C0.78750.07370.74160.110*
C210.76902 (17)0.30074 (17)0.9323 (3)0.0425 (7)
C220.7740 (2)0.33000 (19)0.8192 (3)0.0492 (8)
C230.8056 (2)0.4009 (2)0.8066 (4)0.0630 (10)
H230.80940.42200.73070.076*
C240.8311 (2)0.4405 (2)0.9018 (4)0.0659 (11)
H240.85250.48870.89130.079*
C250.8260 (2)0.4108 (2)1.0132 (4)0.0628 (10)
H250.84450.43871.07840.075*
C260.79364 (18)0.33988 (19)1.0309 (3)0.0490 (8)
C270.7843 (2)0.3081 (2)1.1515 (3)0.0620 (10)
H27A0.72710.29441.16440.093*
H27B0.80080.34501.20970.093*
H27C0.81900.26431.15910.093*
C280.7459 (3)0.2863 (2)0.7147 (3)0.0675 (11)
H28A0.68740.27570.72200.101*
H28B0.77640.23980.71090.101*
H28C0.75570.31470.64310.101*
C310.49473 (18)0.14566 (18)0.2579 (3)0.0412 (7)
C320.48195 (19)0.06980 (19)0.2632 (3)0.0474 (8)
C330.4336 (2)0.0424 (2)0.3538 (3)0.0583 (9)
H330.4246−0.00920.36020.070*
C340.3988 (2)0.0896 (2)0.4340 (3)0.0636 (11)
H340.36510.07030.49440.076*
C350.4122 (2)0.1640 (2)0.4277 (3)0.0577 (9)
H350.38740.19560.48370.069*
C360.46178 (18)0.19438 (19)0.3404 (3)0.0471 (8)
C370.5179 (2)0.0186 (2)0.1726 (3)0.0598 (9)
H37A0.50310.03590.09410.090*
H37B0.4965−0.03130.18450.090*
H37C0.57760.01800.18040.090*
C380.4799 (2)0.2753 (2)0.3355 (4)0.0643 (10)
H38A0.53720.28270.31360.096*
H38B0.46980.29740.41250.096*
H38C0.44440.29870.27720.096*
C410.52944 (17)0.29863 (17)−0.0770 (3)0.0413 (7)
C420.52622 (19)0.37486 (18)−0.0640 (3)0.0512 (8)
C430.4916 (2)0.4163 (2)−0.1540 (4)0.0669 (11)
H430.48880.4685−0.14670.080*
C440.4614 (2)0.3830 (3)−0.2536 (4)0.0706 (12)
H440.43720.4118−0.31380.085*
C450.4664 (2)0.3084 (3)−0.2652 (3)0.0622 (11)
H450.44610.2858−0.33440.075*
C460.50072 (19)0.26419 (19)−0.1777 (3)0.0469 (8)
C470.5609 (3)0.4121 (2)0.0424 (4)0.0740 (11)
H47A0.53110.39560.11210.111*
H47B0.55540.46560.03420.111*
H47C0.61880.39920.05040.111*
C480.5076 (3)0.1818 (2)−0.1925 (4)0.0653 (10)
H48A0.56410.1664−0.17800.098*
H48B0.49180.1682−0.27250.098*
H48C0.47120.1572−0.13660.098*
C510.7056 (4)0.1803 (4)0.4413 (4)0.117 (2)
H51A0.69050.16880.35930.140*
H51B0.71190.23440.44820.140*
H10.688 (2)0.229 (2)0.962 (4)0.064 (12)*
H20.653 (2)0.138 (2)0.105 (4)0.070 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0820 (8)0.1623 (13)0.0843 (8)−0.0148 (8)0.0124 (7)−0.0280 (9)
Cl20.0660 (7)0.233 (2)0.0930 (9)−0.0111 (9)−0.0010 (7)−0.0328 (11)
O10.0329 (11)0.0577 (14)0.0635 (15)−0.0010 (9)0.0056 (10)−0.0061 (12)
O20.0333 (11)0.0671 (15)0.0482 (14)0.0041 (10)−0.0009 (10)0.0057 (12)
N10.0339 (13)0.0450 (16)0.0474 (16)0.0014 (12)0.0002 (11)−0.0052 (13)
N20.0332 (14)0.0484 (17)0.0462 (16)0.0004 (13)0.0021 (12)0.0020 (12)
N30.0324 (13)0.0541 (16)0.0425 (15)0.0037 (11)0.0029 (11)0.0073 (13)
N40.0325 (12)0.0496 (15)0.0399 (15)0.0042 (11)0.0018 (11)0.0035 (13)
C10.0360 (15)0.0491 (19)0.0434 (19)0.0038 (15)−0.0012 (14)−0.0071 (15)
C20.0333 (15)0.0434 (18)0.0432 (18)0.0052 (14)−0.0014 (13)−0.0004 (15)
C110.0365 (15)0.0438 (19)0.058 (2)0.0020 (13)0.0077 (15)−0.0050 (17)
C120.0479 (19)0.051 (2)0.065 (2)0.0089 (16)−0.0008 (17)−0.0021 (18)
C130.059 (2)0.061 (3)0.089 (3)0.0135 (19)0.002 (2)0.004 (2)
C140.064 (3)0.065 (3)0.113 (4)0.015 (2)0.015 (3)−0.004 (3)
C150.062 (2)0.061 (3)0.096 (3)−0.006 (2)0.021 (2)−0.036 (3)
C160.0474 (18)0.061 (2)0.062 (2)−0.0074 (17)0.0105 (18)−0.022 (2)
C170.085 (3)0.069 (3)0.060 (3)0.008 (2)−0.015 (2)−0.007 (2)
C180.064 (2)0.098 (3)0.058 (3)−0.010 (2)0.005 (2)−0.027 (2)
C210.0327 (15)0.0456 (18)0.049 (2)0.0018 (14)−0.0019 (14)−0.0080 (16)
C220.0483 (18)0.046 (2)0.053 (2)−0.0005 (16)0.0012 (16)0.0014 (17)
C230.066 (2)0.055 (2)0.068 (3)−0.0045 (19)0.009 (2)0.005 (2)
C240.064 (2)0.048 (2)0.086 (3)−0.0095 (18)0.007 (2)−0.005 (2)
C250.050 (2)0.061 (2)0.078 (3)−0.0065 (17)−0.0006 (19)−0.025 (2)
C260.0363 (16)0.063 (2)0.048 (2)0.0008 (15)0.0034 (15)−0.0074 (18)
C270.051 (2)0.084 (3)0.051 (2)−0.0011 (19)−0.0030 (17)−0.012 (2)
C280.084 (3)0.070 (3)0.049 (2)−0.009 (2)−0.0037 (19)0.0017 (19)
C310.0339 (15)0.057 (2)0.0327 (16)0.0000 (14)−0.0027 (13)0.0086 (15)
C320.0471 (19)0.056 (2)0.0391 (19)0.0010 (15)−0.0064 (15)0.0115 (16)
C330.058 (2)0.065 (2)0.052 (2)−0.0081 (18)−0.0047 (19)0.019 (2)
C340.052 (2)0.094 (3)0.045 (2)−0.014 (2)0.0003 (17)0.026 (2)
C350.0485 (18)0.085 (3)0.0396 (19)−0.0058 (19)0.0024 (16)−0.0015 (19)
C360.0417 (16)0.059 (2)0.0405 (19)−0.0029 (15)−0.0019 (15)−0.0061 (16)
C370.071 (2)0.052 (2)0.057 (2)0.0046 (18)−0.0014 (19)0.0001 (18)
C380.060 (2)0.069 (3)0.064 (2)−0.0091 (19)0.0111 (19)−0.018 (2)
C410.0299 (14)0.0482 (19)0.0458 (19)0.0032 (13)0.0050 (13)0.0102 (15)
C420.0420 (16)0.049 (2)0.062 (2)0.0033 (15)0.0008 (17)0.0049 (18)
C430.052 (2)0.056 (2)0.093 (3)0.0073 (18)0.006 (2)0.021 (2)
C440.052 (2)0.088 (3)0.071 (3)0.007 (2)−0.001 (2)0.037 (3)
C450.049 (2)0.093 (3)0.044 (2)−0.001 (2)0.0002 (16)0.018 (2)
C460.0398 (16)0.059 (2)0.0422 (19)0.0007 (16)−0.0011 (14)0.0013 (17)
C470.081 (3)0.053 (2)0.088 (3)−0.002 (2)−0.006 (2)−0.010 (2)
C480.069 (2)0.069 (3)0.057 (2)−0.006 (2)−0.0015 (19)−0.009 (2)
C510.145 (5)0.148 (5)0.058 (3)0.027 (4)−0.028 (3)−0.011 (3)

Geometric parameters (Å, °)

Cl1—C511.729 (6)C26—C271.500 (5)
Cl2—C511.756 (7)C27—H27a0.98
O1—N11.357 (3)C27—H27b0.98
O2—N31.398 (3)C27—H27c0.98
O2—H21.05 (4)C28—H28a0.98
N1—C11.294 (4)C28—H28b0.98
N1—C111.449 (4)C28—H28c0.98
N2—C11.322 (4)C31—C321.393 (5)
N2—C211.438 (4)C31—C361.400 (5)
N2—H10.77 (4)C32—C331.394 (5)
N3—C21.330 (4)C32—C371.510 (5)
N3—C311.433 (4)C33—C341.377 (5)
N4—C21.291 (4)C33—H330.95
N4—C411.426 (4)C34—C351.369 (5)
C1—H1a0.95C34—H340.95
C2—H2a0.95C35—C361.398 (5)
C11—C121.387 (5)C35—H350.95
C11—C161.403 (5)C36—C381.498 (5)
C12—C131.402 (5)C37—H37a0.98
C12—C171.487 (5)C37—H37b0.98
C13—C141.351 (6)C37—H37c0.98
C13—H130.95C38—H38a0.98
C14—C151.370 (7)C38—H38b0.98
C14—H140.95C38—H38c0.98
C15—C161.426 (6)C41—C461.391 (4)
C15—H150.95C41—C421.391 (4)
C16—C181.488 (6)C42—C431.394 (5)
C17—H17a0.98C42—C471.502 (5)
C17—H17b0.98C43—C441.380 (6)
C17—H17c0.98C43—H430.95
C18—H18a0.98C44—C451.361 (6)
C18—H18b0.98C44—H440.95
C18—H18c0.98C45—C461.399 (5)
C21—C261.391 (5)C45—H450.95
C21—C221.399 (5)C46—C481.508 (5)
C22—C231.393 (5)C47—H47a0.98
C22—C281.504 (5)C47—H47b0.98
C23—C241.369 (6)C47—H47c0.98
C23—H230.95C48—H48a0.98
C24—C251.383 (6)C48—H48b0.98
C24—H240.95C48—H48c0.98
C25—C261.406 (5)C51—H51a0.99
C25—H250.95C51—H51b0.99
N3—O2—H2109 (2)C22—C28—H28B109.5
C1—N1—O1120.3 (2)H28A—C28—H28B109.5
C1—N1—C11124.4 (2)C22—C28—H28C109.5
O1—N1—C11115.3 (2)H28A—C28—H28C109.5
C1—N2—C21122.7 (3)H28B—C28—H28C109.5
C1—N2—H1123 (3)C32—C31—C36122.5 (3)
C21—N2—H1114 (3)C32—C31—N3118.2 (3)
C2—N3—O2118.6 (2)C36—C31—N3119.3 (3)
C2—N3—C31124.4 (2)C31—C32—C33118.0 (3)
O2—N3—C31115.6 (2)C31—C32—C37121.3 (3)
C2—N4—C41117.5 (2)C33—C32—C37120.7 (3)
N1—C1—N2122.2 (3)C34—C33—C32120.5 (3)
N1—C1—H1A118.9C34—C33—H33119.8
N2—C1—H1A118.9C32—C33—H33119.8
N4—C2—N3125.0 (3)C35—C34—C33120.7 (3)
N4—C2—H2A117.5C35—C34—H34119.6
N3—C2—H2A117.5C33—C34—H34119.6
C12—C11—C16124.1 (3)C34—C35—C36121.3 (3)
C12—C11—N1117.9 (3)C34—C35—H35119.4
C16—C11—N1117.9 (3)C36—C35—H35119.4
C11—C12—C13117.6 (3)C35—C36—C31117.0 (3)
C11—C12—C17122.2 (3)C35—C36—C38121.8 (3)
C13—C12—C17120.2 (4)C31—C36—C38121.1 (3)
C14—C13—C12120.2 (4)C32—C37—H37A109.5
C14—C13—H13119.9C32—C37—H37B109.5
C12—C13—H13119.9H37A—C37—H37B109.5
C13—C14—C15122.2 (4)C32—C37—H37C109.5
C13—C14—H14118.9H37A—C37—H37C109.5
C15—C14—H14118.9H37B—C37—H37C109.5
C14—C15—C16120.8 (4)C36—C38—H38A109.5
C14—C15—H15119.6C36—C38—H38B109.5
C16—C15—H15119.6H38A—C38—H38B109.5
C11—C16—C15115.1 (4)C36—C38—H38C109.5
C11—C16—C18121.2 (3)H38A—C38—H38C109.5
C15—C16—C18123.6 (4)H38B—C38—H38C109.5
C12—C17—H17A109.5C46—C41—C42121.4 (3)
C12—C17—H17B109.5C46—C41—N4119.6 (3)
H17A—C17—H17B109.5C42—C41—N4118.9 (3)
C12—C17—H17C109.5C41—C42—C43118.3 (3)
H17A—C17—H17C109.5C41—C42—C47121.2 (3)
H17B—C17—H17C109.5C43—C42—C47120.5 (3)
C16—C18—H18A109.5C44—C43—C42121.1 (4)
C16—C18—H18B109.5C44—C43—H43119.5
H18A—C18—H18B109.5C42—C43—H43119.5
C16—C18—H18C109.5C45—C44—C43119.6 (4)
H18A—C18—H18C109.5C45—C44—H44120.2
H18B—C18—H18C109.5C43—C44—H44120.2
C26—C21—C22122.5 (3)C44—C45—C46121.6 (4)
C26—C21—N2118.6 (3)C44—C45—H45119.2
C22—C21—N2118.9 (3)C46—C45—H45119.2
C23—C22—C21117.8 (3)C41—C46—C45118.0 (3)
C23—C22—C28121.2 (3)C41—C46—C48120.9 (3)
C21—C22—C28121.0 (3)C45—C46—C48121.2 (3)
C24—C23—C22121.0 (4)C42—C47—H47A109.5
C24—C23—H23119.5C42—C47—H47B109.5
C22—C23—H23119.5H47A—C47—H47B109.5
C23—C24—C25120.5 (3)C42—C47—H47C109.5
C23—C24—H24119.7H47A—C47—H47C109.5
C25—C24—H24119.7H47B—C47—H47C109.5
C24—C25—C26120.7 (3)C46—C48—H48A109.5
C24—C25—H25119.6C46—C48—H48B109.5
C26—C25—H25119.6H48A—C48—H48B109.5
C21—C26—C25117.3 (3)C46—C48—H48C109.5
C21—C26—C27121.2 (3)H48A—C48—H48C109.5
C25—C26—C27121.4 (3)H48B—C48—H48C109.5
C26—C27—H27A109.5CL1—C51—CL2110.8 (3)
C26—C27—H27B109.5CL1—C51—H51A109.5
H27A—C27—H27B109.5CL2—C51—H51A109.5
C26—C27—H27C109.5CL1—C51—H51B109.5
H27A—C27—H27C109.5CL2—C51—H51B109.5
H27B—C27—H27C109.5H51A—C51—H51B108.1
C22—C28—H28A109.5
O1—N1—C1—N20.0 (4)N2—C21—C26—C27−0.3 (4)
C11—N1—C1—N2−179.4 (3)C24—C25—C26—C211.3 (5)
C21—N2—C1—N1174.6 (3)C24—C25—C26—C27−177.4 (3)
C41—N4—C2—N3174.3 (3)C2—N3—C31—C32118.6 (3)
O2—N3—C2—N42.8 (5)O2—N3—C31—C32−75.2 (4)
C31—N3—C2—N4168.5 (3)C2—N3—C31—C36−63.1 (4)
C1—N1—C11—C1294.1 (4)O2—N3—C31—C36103.1 (3)
O1—N1—C11—C12−85.3 (3)C36—C31—C32—C330.8 (5)
C1—N1—C11—C16−90.7 (4)N3—C31—C32—C33179.0 (3)
O1—N1—C11—C1689.9 (3)C36—C31—C32—C37179.7 (3)
C16—C11—C12—C13−0.2 (5)N3—C31—C32—C37−2.0 (4)
N1—C11—C12—C13174.6 (3)C31—C32—C33—C341.0 (5)
C16—C11—C12—C17−179.5 (3)C37—C32—C33—C34−177.9 (3)
N1—C11—C12—C17−4.7 (5)C32—C33—C34—C35−1.3 (5)
C11—C12—C13—C141.5 (6)C33—C34—C35—C36−0.3 (5)
C17—C12—C13—C14−179.2 (4)C34—C35—C36—C312.0 (5)
C12—C13—C14—C15−2.0 (6)C34—C35—C36—C38−177.4 (3)
C13—C14—C15—C161.1 (6)C32—C31—C36—C35−2.2 (4)
C12—C11—C16—C15−0.6 (5)N3—C31—C36—C35179.5 (3)
N1—C11—C16—C15−175.4 (3)C32—C31—C36—C38177.1 (3)
C12—C11—C16—C18179.7 (3)N3—C31—C36—C38−1.1 (5)
N1—C11—C16—C184.9 (5)C2—N4—C41—C46−80.7 (3)
C14—C15—C16—C110.2 (5)C2—N4—C41—C42102.9 (3)
C14—C15—C16—C18179.9 (4)C46—C41—C42—C431.4 (5)
C1—N2—C21—C26−90.6 (4)N4—C41—C42—C43177.7 (3)
C1—N2—C21—C2291.6 (4)C46—C41—C42—C47−177.1 (3)
C26—C21—C22—C230.6 (5)N4—C41—C42—C47−0.8 (4)
N2—C21—C22—C23178.3 (3)C41—C42—C43—C44−0.1 (5)
C26—C21—C22—C28−179.4 (3)C47—C42—C43—C44178.4 (3)
N2—C21—C22—C28−1.7 (5)C42—C43—C44—C45−0.9 (6)
C21—C22—C23—C240.1 (5)C43—C44—C45—C460.8 (5)
C28—C22—C23—C24−179.9 (4)C42—C41—C46—C45−1.6 (4)
C22—C23—C24—C25−0.1 (6)N4—C41—C46—C45−177.9 (3)
C23—C24—C25—C26−0.7 (6)C42—C41—C46—C48177.6 (3)
C22—C21—C26—C25−1.3 (5)N4—C41—C46—C481.3 (4)
N2—C21—C26—C25−179.0 (3)C44—C45—C46—C410.5 (5)
C22—C21—C26—C27177.4 (3)C44—C45—C46—C48−178.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1···N4i0.77 (4)2.12 (4)2.875 (4)166 (4)
O2—H2···O1ii1.05 (4)1.48 (4)2.508 (3)168 (3)

Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2181).

References

  • Briggs, L. H., Cambie, R. C., Dean, C. & Rutledge, P. S. (1976). Aust. J. Chem.29, 357–366.
  • Bruker (2009). APEX2, SAINT, and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chartrand, D. & Hanan, G. S. (2008). Chem. Commun. pp. 727–729. [PubMed]
  • Coles, M. P. (2006). Dalton Trans. pp. 985–1001. [PubMed]
  • Cotton, A. F., Lei, P., Murillo, C. A. & Wang, L.-S. (2003). Inorg. Chimica Acta, 349, 165-172.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hirano, K., Urban, S., Wang, C. & Glorius, F. (2009). Org. Lett.11, 1019–1022. [PubMed]
  • Kharsan, R. S. & Mishra, R. K. (1980). Bull. Chem. Soc. Jpn, 53, 1763–1768.
  • Krahulic, K. E., Enright, G. D., Parvez, M. & Roesler, R. (2005). J. Am. Chem. Soc.127, 4142–4143. [PubMed]
  • Krajete, A., Steiner, G., Kopacka, H., Ongania, K.-H., Wurst, K., Kristen, M. O., Preishuber-Pflugl, P. & Bildstein, B. (2004). Eur. J. Inorg. Chem. pp. 1740–1752.
  • Maris, T. (2004). UdMX, Université de Montréal, Montréal, QC, Canada.
  • Satyanarayana, K. & Mishra, R. K. (1976). J. Indian Chem.LIII, 469–471.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography