PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1191–m1192.
Published online 2009 September 9. doi:  10.1107/S1600536809035594
PMCID: PMC2970451

Bis(1,3-dibutylthiourea)dicyanido­mercury(II)

Abstract

In the title compound, [Hg(CN)2(C9H20N2S)2], the Hg atom lies on a twofold rotation axis. There is only half a mol­ecule in the asymmetric unit. The Hg atom has a distorted tetra­hedral coordination involving the S atoms of two 1-butyl-3-propyl­thio­urea groups and the C atoms of the two CN anions. In the crystal packing, adjacent mol­ecules are connected by inter­molecular N—H(...)N and N—H(...)S hydrogen bonds, forming infinite chains in three dimensions.

Related literature

For the coordination chemistry of thio­urea-type ligands, see: Nadeem et al. (2009 [triangle], 2008 [triangle]); Zoufalá et al. (2007 [triangle]); Khan et al. (2007 [triangle]); Hanif et al. (2007 [triangle]); Fuks et al. (2005 [triangle]); Moro et al. (2009 [triangle]); Matesanz & Souza (2007 [triangle]). For crystallographic reports about mercury(II) complexes containing thio­amides, see: Popovic et al. (2000 [triangle], 2002 [triangle]); Pavlović et al. (2000 [triangle]); Jiang et al. (2001 [triangle]); Wu et al. (2004 [triangle]). For the spectroscopy and structural chemistry of cyanide complexes of silver(I) and gold(I) with thio­nes, see: Hanif et al. (2007 [triangle]); Wu et al. (2004 [triangle]); Ahmad, Isab & Ashraf (2002 [triangle]); Ahmad, Isab & Perzanowski (2002 [triangle]); Ashraf et al. (2002 [triangle]); Ahmad & Isab (2001 [triangle]); Ahmad (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1191-scheme1.jpg

Experimental

Crystal data

  • [Hg(CN)2(C9H20N2S)2]
  • M r = 629.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1191-efi1.jpg
  • a = 17.4692 (3) Å
  • b = 9.5928 (2) Å
  • c = 17.4699 (4) Å
  • β = 111.540 (1)°
  • V = 2723.12 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.82 mm−1
  • T = 296 K
  • 0.14 × 0.15 × 0.17 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 15120 measured reflections
  • 3372 independent reflections
  • 2918 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.044
  • S = 1.02
  • 3372 reflections
  • 134 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035594/bt5052sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035594/bt5052Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The coordination chemistry of thiourea type ligands has been the subject of several recent studies because of the relevance of their binding sites to those in living systems (Nadeem et al., 2009; Nadeem et al., 2008; Zoufalá et al., 2007; Khan et al., 2007; Hanif et al., 2007; Fuks et al., 2005; Moro et al., 2009; Matesanz & Souza, 2007). Crystallographic reports about mercury (II) complexes containing thioamides establish that these ligands are coordinated via the sulfur atom(Popovic et al., 2000, 2002; Pavlović, Popović, Soldin et al., 2000; Jiang et al., 2001; Wu et al., 2004). We have been involved in investigating the spectral and structural chemistry of cyanido complexes of silver (I) and gold (I) with thiones with emphasis onligand scrambling reactions (Hanif et al., 2007; Wu et al., 2004; Ahmad, Isab & Ashraf, 2002; Ahmad, Isab & Perzanowski, 2002; Ashraf et al., 2002; Ahmad & Isab, 2001; Ahmad, 2004). As a part ofextension of our work towards complexation of Hg (CN)2 with thiones, we report here the crystal structures of [(N,N/-dibutylthiourea)2Hg(CN)2], (I).

In the title compound (I), (Fig. 1), the Hg anion lies on a twofold rotation axes paralel to the b axis in space group C2/c and one half of the molecule to the other half are connected by this symmetry operation. The Hg atom has a distorted tetrahedral coordination by the S atoms of two N,N/-dibutylthiourea groups and the C atoms of the two CN groups. The bond distances Hg—S and Hg—C are 2.7424 (7) Å and 2.072 (3) Å, and the bond angles C—Hg—C, S—Hg—S and C—Hg—C are 150.51 (11)°, 95.55 (2)° and 100.45 (8)°. All bond lengths and bond angles in (I) are in the range of expected values.

In the crystal packing, the adjacent molecules are connected by intermolecular N—H···N and N—H···S hydrogen bonds (Table 1). In Fig. 2, the packing and hydrogen bonding of (I) are shown viewed down b axis.

Experimental

For the preparation of the title complex, Hg (CN)2 was prepared first by the reaction of 1 mmol HgCl2 in methanol with 2 mmole of KCN in water. Then 0.253 g (1 mmole) Hg (CN)2 dissolved in15 ml methanol was mixed with 2 equivalents of N,N/-dibutylthiourea in 15 methanol. After stirring for 15 minutes, the resulting mixture was filtered and filtrate was kept at room temperature. After 24 h white crystals were obtained.

Refinement

H atoms were located geometrically and treated as riding with C—H = 0.97 Å (methylene), C—H = 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.2 or 1.5Ueq(C, N).

Figures

Fig. 1.
The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
Fig. 2.
The packing and hydrogen bonding of (I) viewed down b axis. Hydrogen atoms not involved in the showed interactions have been omitted for clarity.

Crystal data

[Hg(CN)2(C9H20N2S)2]F(000) = 1256
Mr = 629.31Dx = 1.535 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6609 reflections
a = 17.4692 (3) Åθ = 2.5–27.2°
b = 9.5928 (2) ŵ = 5.82 mm1
c = 17.4699 (4) ÅT = 296 K
β = 111.540 (1)°Irregular, white
V = 2723.12 (10) Å30.17 × 0.15 × 0.14 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer2918 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.032
graphiteθmax = 28.3°, θmin = 2.5°
[var phi] and ω scansh = −23→23
15120 measured reflectionsk = −12→12
3372 independent reflectionsl = −20→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0211P)2], where P = (Fo2 + 2Fc2)/3
3372 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.72 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg11.000000.20478 (1)0.750000.0405 (1)
S11.08516 (3)0.39691 (7)0.86634 (4)0.0414 (2)
N10.86048 (15)0.1224 (3)0.81955 (17)0.0718 (10)
N21.11488 (12)0.5094 (2)0.74219 (12)0.0422 (7)
N31.22801 (11)0.4758 (2)0.85840 (12)0.0411 (7)
C10.91098 (16)0.1498 (3)0.79668 (17)0.0475 (9)
C21.14750 (13)0.4655 (2)0.81878 (15)0.0341 (7)
C31.16093 (17)0.5591 (3)0.69240 (17)0.0548 (10)
C41.10347 (17)0.6051 (3)0.60900 (17)0.0534 (10)
C51.0548 (2)0.7334 (4)0.6094 (2)0.0633 (12)
C60.9979 (3)0.7767 (4)0.5243 (3)0.0875 (17)
C71.27223 (15)0.4387 (3)0.94375 (16)0.0441 (8)
C81.27906 (17)0.5571 (3)1.00242 (16)0.0473 (9)
C91.3311 (2)0.5232 (3)1.09034 (17)0.0586 (11)
C101.3434 (3)0.6466 (4)1.1477 (2)0.0795 (14)
H21.062100.508800.719500.0510*
H31.256500.507100.831200.0490*
H3A1.196000.485000.686300.0660*
H3B1.195800.636600.720200.0660*
H4A1.135300.622300.574700.0640*
H4B1.065500.529700.584100.0640*
H5A1.092400.809300.634200.0760*
H5B1.022400.716500.643300.0760*
H6A1.028800.785500.489100.1310*
H6B0.973000.864600.527500.1310*
H6C0.955800.707500.502400.1310*
H7A1.327100.407800.950100.0530*
H7B1.244300.361200.958100.0530*
H8A1.224300.582500.999500.0570*
H8B1.302500.637300.985100.0570*
H9A1.384500.490401.092700.0700*
H9B1.305200.448201.109200.0700*
H10A1.367600.722201.128500.1190*
H10B1.379100.620401.202100.1190*
H10C1.291100.675401.148700.1190*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.0323 (1)0.0459 (1)0.0478 (1)0.00000.0199 (1)0.0000
S10.0359 (3)0.0566 (4)0.0340 (3)−0.0115 (3)0.0154 (3)−0.0005 (3)
N10.0516 (14)0.104 (2)0.0668 (17)−0.0297 (15)0.0300 (13)−0.0046 (17)
N20.0326 (10)0.0594 (14)0.0352 (12)−0.0068 (9)0.0133 (9)0.0057 (11)
N30.0313 (10)0.0545 (13)0.0383 (12)−0.0043 (9)0.0136 (9)0.0051 (10)
C10.0385 (13)0.0553 (16)0.0463 (16)−0.0125 (12)0.0126 (12)−0.0037 (14)
C20.0330 (11)0.0369 (13)0.0340 (14)−0.0030 (9)0.0142 (10)−0.0015 (11)
C30.0473 (15)0.076 (2)0.0491 (17)−0.0018 (14)0.0270 (14)0.0144 (15)
C40.0563 (16)0.069 (2)0.0396 (16)−0.0019 (14)0.0232 (13)0.0039 (15)
C50.076 (2)0.066 (2)0.052 (2)0.0065 (17)0.0285 (17)0.0103 (16)
C60.084 (3)0.101 (3)0.074 (3)0.026 (2)0.025 (2)0.020 (2)
C70.0353 (12)0.0476 (15)0.0446 (16)0.0040 (11)0.0089 (11)0.0054 (13)
C80.0477 (14)0.0466 (15)0.0427 (16)0.0038 (12)0.0110 (12)0.0064 (13)
C90.0665 (19)0.0565 (19)0.0433 (17)0.0044 (15)0.0090 (15)0.0050 (15)
C100.107 (3)0.066 (2)0.051 (2)−0.005 (2)0.012 (2)−0.0008 (19)

Geometric parameters (Å, °)

Hg1—S12.7424 (7)C3—H3A0.9700
Hg1—C12.072 (3)C3—H3B0.9700
Hg1—S1i2.7424 (7)C4—H4A0.9700
Hg1—C1i2.072 (3)C4—H4B0.9700
S1—C21.724 (2)C5—H5A0.9700
N1—C11.125 (4)C5—H5B0.9700
N2—C21.316 (3)C6—H6A0.9600
N2—C31.465 (4)C6—H6B0.9600
N3—C21.324 (3)C6—H6C0.9600
N3—C71.449 (3)C7—H7A0.9700
N2—H20.8600C7—H7B0.9700
N3—H30.8600C8—H8A0.9700
C3—C41.500 (4)C8—H8B0.9700
C4—C51.497 (5)C9—H9A0.9700
C5—C61.512 (6)C9—H9B0.9700
C7—C81.505 (4)C10—H10A0.9600
C8—C91.505 (4)C10—H10B0.9600
C9—C101.514 (5)C10—H10C0.9600
S1···C13.693 (3)H3A···N32.8500
S1···C83.684 (3)H3A···H32.3700
S1···N2i3.479 (2)H3A···H10Cvi2.5200
S1···H7B2.6700H3B···N32.7400
S1···H2i2.6800H3B···H32.2200
S1···H6Aii3.1900H3B···H5A2.5000
N1···N3iii2.991 (3)H3B···N1iv2.7600
N1···C3iii3.431 (4)H4A···H6A2.4700
N2···S1i3.479 (2)H4B···H22.4000
N3···N1iv2.991 (3)H4B···H6C2.5700
N1···H3Biii2.7600H5A···H3B2.5000
N1···H3iii2.2000H5A···H7Avii2.5600
N2···H5B2.7400H5B···N22.7400
N3···H3A2.8500H5B···H22.3500
N3···H3B2.7400H6A···H4A2.4700
C1···S13.693 (3)H6A···S1vi3.1900
C1···C2i3.574 (4)H6C···H4B2.5700
C3···N1iv3.431 (4)H7A···H9A2.4500
C8···S13.684 (3)H7A···H5Aviii2.5600
C1···H10Bv3.0100H7B···S12.6700
C3···H32.4400H7B···H9B2.6000
C5···H22.8600H7B···H7Bix2.5500
H2···C52.8600H8A···H10C2.5900
H2···H4B2.4000H8B···H10A2.4800
H2···H5B2.3500H9A···H7A2.4500
H2···S1i2.6800H9B···H7B2.6000
H3···C32.4400H10A···H8B2.4800
H3···H3A2.3700H10B···C1x3.0100
H3···H3B2.2200H10C···H8A2.5900
H3···N1iv2.2000H10C···H3Aii2.5200
S1—Hg1—C199.25 (8)C4—C5—H5A109.00
S1—Hg1—S1i95.55 (2)C4—C5—H5B109.00
S1—Hg1—C1i100.45 (8)C6—C5—H5A109.00
S1i—Hg1—C1100.45 (8)C6—C5—H5B109.00
C1—Hg1—C1i150.51 (11)H5A—C5—H5B108.00
S1i—Hg1—C1i99.25 (8)C5—C6—H6A109.00
Hg1—S1—C299.56 (8)C5—C6—H6B109.00
C2—N2—C3125.5 (2)C5—C6—H6C109.00
C2—N3—C7125.6 (2)H6A—C6—H6B109.00
C2—N2—H2117.00H6A—C6—H6C110.00
C3—N2—H2117.00H6B—C6—H6C109.00
C2—N3—H3117.00N3—C7—H7A109.00
C7—N3—H3117.00N3—C7—H7B109.00
Hg1—C1—N1177.4 (3)C8—C7—H7A109.00
S1—C2—N2119.84 (19)C8—C7—H7B109.00
S1—C2—N3120.95 (18)H7A—C7—H7B108.00
N2—C2—N3119.2 (2)C7—C8—H8A109.00
N2—C3—C4110.8 (2)C7—C8—H8B109.00
C3—C4—C5114.6 (2)C9—C8—H8A109.00
C4—C5—C6113.0 (3)C9—C8—H8B109.00
N3—C7—C8113.2 (2)H8A—C8—H8B108.00
C7—C8—C9113.5 (2)C8—C9—H9A109.00
C8—C9—C10113.1 (3)C8—C9—H9B109.00
N2—C3—H3A109.00C10—C9—H9A109.00
N2—C3—H3B109.00C10—C9—H9B109.00
C4—C3—H3A109.00H9A—C9—H9B108.00
C4—C3—H3B109.00C9—C10—H10A109.00
H3A—C3—H3B108.00C9—C10—H10B109.00
C3—C4—H4A109.00C9—C10—H10C109.00
C3—C4—H4B109.00H10A—C10—H10B110.00
C5—C4—H4A109.00H10A—C10—H10C109.00
C5—C4—H4B109.00H10B—C10—H10C110.00
H4A—C4—H4B108.00
C1—Hg1—S1—C2−169.87 (11)C7—N3—C2—S1−2.8 (3)
S1i—Hg1—S1—C2−68.30 (8)C7—N3—C2—N2176.7 (2)
C1i—Hg1—S1—C232.19 (11)C2—N3—C7—C8−88.9 (3)
Hg1—S1—C2—N251.24 (18)N2—C3—C4—C567.9 (3)
Hg1—S1—C2—N3−129.28 (17)C3—C4—C5—C6179.8 (3)
C3—N2—C2—S1−174.74 (19)N3—C7—C8—C9−175.0 (2)
C3—N2—C2—N35.8 (3)C7—C8—C9—C10175.2 (3)
C2—N2—C3—C4−178.1 (2)

Symmetry codes: (i) −x+2, y, −z+3/2; (ii) x, −y+1, z+1/2; (iii) x−1/2, y−1/2, z; (iv) x+1/2, y+1/2, z; (v) x−1/2, −y+1/2, z−1/2; (vi) x, −y+1, z−1/2; (vii) −x+5/2, y+1/2, −z+3/2; (viii) −x+5/2, y−1/2, −z+3/2; (ix) −x+5/2, −y+1/2, −z+2; (x) x+1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.683.479 (2)155
N3—H3···N1iv0.862.202.991 (3)153
C7—H7B···S10.972.673.070 (3)105

Symmetry codes: (i) −x+2, y, −z+3/2; (iv) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5052).

References

  • Ahmad, S. (2004). Coord. Chem. Rev.248, 231–243.
  • Ahmad, S. & Isab, A. A. (2001). Inorg. Chem. Commun.4, 362–364.
  • Ahmad, S., Isab, A. A. & Ashraf, W. (2002). Inorg. Chem. Commun.5, 816–819.
  • Ahmad, S., Isab, A. A. & Perzanowski, H. P. (2002). Can. J. Chem.80, 1279–1283.
  • Ashraf, W., Ahmad, S. & Isab, A. A. (2002). Transition Met. Chem.29, 400–404.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fuks, L., Sadlej-Sosnowska, N., Samochocka, K. & Starosta, W. (2005). J. Mol. Struct.740, 229–235.
  • Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.
  • Jiang, X. N., Xu, D., Yuan, D. R., Yu, W. T., Lu, M. K., Gu, S. Y., Zu, G. H. & Fu, Q. (2001). Chin. Chem. Lett.12, 279–282,.
  • Khan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550–m2551.
  • Matesanz, A. I. & Souza, P. (2007). J. Inorg. Biochem.101, 1354–1361. [PubMed]
  • Moro, A. C., Netto, A. V. G., Ananias, S. R., Quilles, M. B., Carlos, I. Z., Pavan, F. R., Leite, C. Q. F. & Hörner, M. (2009). Eur. J. Med. Chem. In the press.
  • Nadeem, S., Khawar Rauf, M., Ebihara, M., Tirmizi, S. A. & Ahmad, S. (2008). Acta Cryst. E64, m698–m699. [PMC free article] [PubMed]
  • Nadeem, S., Rauf, M. K., Ahmad, S., Ebihara, M., Tirmizi, S. A. & Badshah, A. B. (2009). Transition Met. Chem.34, 197–202.
  • Pavlović, G., Popović, Z., Soldin, Z. & Matković-Čalogović, D. (2000). Acta Cryst. C56, 61–63. [PubMed]
  • Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., Rajic, M., Vikic-Topic, D. & Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142–152.
  • Popovic, Z., Soldin, Z., Pavlovic, G., Calogovic, D. M. & Rajic, M. M. S. (2002). Struct. Chem.13, 425–436.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wu, Z.-Y., Xu, D.-J. & Hung, C.-H. (2004). J. Coord. Chem.57, 791–796.
  • Zoufalá, P., Rüffer, T., Lang, H., Ahmad, S. & Mufakkar, M. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x219–x220.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography