PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2319.
Published online 2009 September 5. doi:  10.1107/S1600536809031444
PMCID: PMC2970447

2-Nitro­benzyl 2-chloro­acetate

Abstract

In the mol­ecule of the title compound, C9H8ClNO4, an intra­molecular C—H(...)O inter­action results in the formation of a near-planar (r.m.s. deviation 0.002 Å) five-membered ring, which is oriented at a dihedral angle of 4.07 (4)° with respect to the adjacent aromatic ring. In the crystal structure, inter­molecular C—H(...)O inter­actions link the mol­ecules into a two-dimensional network.

Related literature

For a related structure, see: Pyun et al. (2001 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2319-scheme1.jpg

Experimental

Crystal data

  • C9H8ClNO4
  • M r = 229.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2319-efi1.jpg
  • a = 8.0270 (16) Å
  • b = 6.7530 (14) Å
  • c = 19.266 (4) Å
  • β = 92.52 (3)°
  • V = 1043.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.900, T max = 0.965
  • 2036 measured reflections
  • 1893 independent reflections
  • 891 reflections with I > 2σ(I)
  • R int = 0.025
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.195
  • S = 1.00
  • 1893 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031444/hk2752sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031444/hk2752Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Innovation Fund for doctoral theses (BSCX200811), Nanjing University of Technology, for support.

supplementary crystallographic information

Comment

Some derivatives of p-nitrobenzyl alcohol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. Intramolecular C-H···O interaction (Table 1) results in the formation of a planar five-membered ring B (O2/C3/C4/C9/H9A), which is oriented with respect to the adjacent ring A at a dihedral angle of A/B = 4.07 (4)°.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, chloroacetyl chloride (1.1 g) and 2-nitrobenzyl alcohol (1.53 g) were added into the mixture of pyridine (15 ml) and dichloromethane (30 ml) at 273–278 K. The gross products were extracted with n-hexane, washed with water and dried under vacuum, and then recrystallized from dichloromethane. Finally the title compound was obtained (yield; 0.61 g) (Pyun et al., 2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C9H8ClNO4F(000) = 472
Mr = 229.61Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.0270 (16) Åθ = 9–13°
b = 6.7530 (14) ŵ = 0.36 mm1
c = 19.266 (4) ÅT = 294 K
β = 92.52 (3)°Block, yellow
V = 1043.3 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer891 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
graphiteθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 0→9
Absorption correction: ψ scan (North et al., 1968)k = 0→8
Tmin = 0.900, Tmax = 0.965l = −23→23
2036 measured reflections3 standard reflections every 120 min
1893 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.195w = 1/[σ2(Fo2) + (0.07P)2 + 0.84P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1893 reflectionsΔρmax = 0.28 e Å3
137 parametersΔρmin = −0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl−0.3781 (2)0.3294 (4)0.19943 (9)0.1458 (10)
O1−0.0286 (4)0.3868 (6)0.25207 (18)0.0985 (12)
O2−0.0679 (3)0.2382 (5)0.35365 (15)0.0743 (9)
O30.4281 (5)0.3113 (9)0.3977 (2)0.151 (2)
O40.5546 (5)0.2492 (8)0.4935 (3)0.161 (2)
N0.4264 (5)0.2744 (8)0.4576 (3)0.1028 (16)
C1−0.2908 (6)0.2341 (10)0.2755 (2)0.1002 (18)
H1A−0.35770.27450.31370.120*
H1B−0.29390.09060.27300.120*
C2−0.1141 (6)0.2988 (7)0.2904 (2)0.0722 (13)
C30.1048 (5)0.2696 (7)0.3759 (2)0.0722 (13)
H3A0.14240.39760.36000.087*
H3B0.17460.16800.35660.087*
C40.1165 (5)0.2610 (6)0.4535 (2)0.0559 (10)
C50.2673 (5)0.2629 (7)0.4927 (2)0.0706 (13)
C60.2753 (7)0.2548 (8)0.5642 (3)0.0889 (15)
H6A0.37800.25670.58850.107*
C70.1300 (8)0.2440 (7)0.5994 (3)0.0874 (15)
H7A0.13320.23790.64770.105*
C8−0.0187 (6)0.2423 (7)0.5624 (2)0.0735 (13)
H8A−0.11730.23640.58590.088*
C9−0.0259 (5)0.2491 (6)0.4913 (2)0.0599 (11)
H9A−0.12940.24560.46770.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.1014 (12)0.224 (2)0.1105 (13)0.0086 (13)−0.0150 (9)0.0395 (14)
O10.101 (3)0.116 (3)0.080 (2)−0.014 (2)0.0205 (19)0.024 (2)
O20.0632 (18)0.096 (2)0.0641 (19)−0.0135 (17)0.0092 (14)0.0080 (17)
O30.074 (2)0.267 (7)0.115 (3)−0.035 (3)0.041 (2)−0.036 (4)
O40.055 (2)0.222 (6)0.205 (5)0.002 (3)0.001 (3)0.003 (4)
N0.049 (3)0.122 (4)0.138 (4)−0.010 (3)0.013 (3)−0.032 (4)
C10.077 (3)0.148 (5)0.076 (3)−0.006 (4)0.004 (2)0.008 (3)
C20.080 (3)0.075 (3)0.064 (3)0.004 (3)0.018 (2)0.000 (3)
C30.062 (3)0.080 (3)0.076 (3)−0.008 (2)0.021 (2)−0.005 (3)
C40.051 (2)0.050 (2)0.068 (2)0.000 (2)0.0161 (19)−0.005 (2)
C50.057 (2)0.071 (3)0.086 (3)−0.005 (2)0.016 (2)−0.007 (3)
C60.081 (3)0.091 (4)0.093 (4)0.003 (3)−0.015 (3)0.004 (3)
C70.114 (4)0.080 (4)0.069 (3)−0.001 (4)0.015 (3)0.001 (3)
C80.078 (3)0.064 (3)0.080 (3)−0.003 (3)0.028 (3)0.001 (3)
C90.056 (2)0.056 (3)0.070 (3)−0.001 (2)0.0164 (19)−0.001 (2)

Geometric parameters (Å, °)

Cl—C11.721 (5)C3—H3B0.9700
O1—C21.189 (5)C4—C91.385 (5)
O2—C21.324 (5)C4—C51.398 (6)
O2—C31.448 (5)C5—C61.378 (6)
N—O31.181 (6)C6—C71.377 (7)
N—O41.227 (6)C6—H6A0.9300
N—C51.472 (6)C7—C81.363 (7)
C1—C21.499 (7)C7—H7A0.9300
C1—H1A0.9700C8—C91.369 (6)
C1—H1B0.9700C8—H8A0.9300
C3—C41.494 (6)C9—H9A0.9300
C3—H3A0.9700
C2—O2—C3117.0 (3)C9—C4—C5115.6 (4)
O3—N—O4122.3 (5)C9—C4—C3120.8 (4)
O3—N—C5120.5 (5)C5—C4—C3123.7 (4)
O4—N—C5117.2 (6)C6—C5—C4122.7 (4)
C2—C1—Cl113.6 (4)C6—C5—N117.2 (5)
C2—C1—H1A108.8C4—C5—N120.0 (4)
Cl—C1—H1A108.8C7—C6—C5119.5 (5)
C2—C1—H1B108.8C7—C6—H6A120.3
Cl—C1—H1B108.8C5—C6—H6A120.3
H1A—C1—H1B107.7C8—C7—C6119.0 (5)
O1—C2—O2125.4 (5)C8—C7—H7A120.5
O1—C2—C1126.5 (5)C6—C7—H7A120.5
O2—C2—C1108.1 (4)C7—C8—C9121.4 (4)
O2—C3—C4107.9 (3)C7—C8—H8A119.3
O2—C3—H3A110.1C9—C8—H8A119.3
C4—C3—H3A110.1C8—C9—C4121.9 (4)
O2—C3—H3B110.1C8—C9—H9A119.0
C4—C3—H3B110.1C4—C9—H9A119.0
H3A—C3—H3B108.4
C3—O2—C2—O1−4.6 (7)O3—N—C5—C6−168.6 (6)
C3—O2—C2—C1174.4 (4)O4—N—C5—C69.6 (8)
Cl—C1—C2—O1−9.0 (8)O3—N—C5—C411.2 (8)
Cl—C1—C2—O2172.1 (3)O4—N—C5—C4−170.6 (5)
C2—O2—C3—C4159.9 (4)C4—C5—C6—C70.2 (8)
O2—C3—C4—C9−7.0 (6)N—C5—C6—C7180.0 (5)
O2—C3—C4—C5172.5 (4)C5—C6—C7—C8−0.3 (8)
C9—C4—C5—C6−0.4 (7)C6—C7—C8—C90.7 (8)
C3—C4—C5—C6−180.0 (5)C7—C8—C9—C4−1.0 (7)
C9—C4—C5—N179.8 (4)C5—C4—C9—C80.8 (6)
C3—C4—C5—N0.2 (7)C3—C4—C9—C8−179.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.972.433.372 (6)166
C7—H7A···O1ii0.932.583.374 (6)143
C9—H9A···O20.932.272.660 (5)104

Symmetry codes: (i) x−1, y, z; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2752).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Pyun, D. K., Jeong, W. J., Jung, H. J., Kim, J. H., Lee, J. S., Lee, C. H. & Kim, B. J. (2001). Synlett, 12, 1950–1952.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography