PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1195.
Published online 2009 September 12. doi:  10.1107/S1600536809035971
PMCID: PMC2970444

Tetra­aqua­bis[2-(thio­semicarbazonometh­yl)benzene­sulfonato]calcium(II)

Abstract

In the title compound, [Ca(C8H8N3O3S2)2(H2O)4], the Ca atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-m1195-efi1.jpg) adopts a slightly distorted octa­hedral CaO6 geometry and the mol­ecular conformation is stabilized by intra­molecular N—H(...)N inter­actions. In the crystal, the mol­ecules are linked by O—H(...)O, O—H(...)S, N—H(...)O and N—H(...)S hydrogen bonds.

Related literature

For background to Schiff bases, see: Sawant et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1195-scheme1.jpg

Experimental

Crystal data

  • [Ca(C8H8N3O3S2)2(H2O)4]
  • M r = 628.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1195-efi2.jpg
  • a = 6.9123 (11) Å
  • b = 9.6383 (13) Å
  • c = 10.9481 (17) Å
  • α = 64.372 (1)°
  • β = 87.708 (2)°
  • γ = 83.225 (2)°
  • V = 652.99 (17) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.62 mm−1
  • T = 298 K
  • 0.31 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan SADABS (Bruker, 2000 [triangle]) T min = 0.831, T max = 0.929
  • 2223 measured reflections
  • 2223 independent reflections
  • 1781 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078
  • wR(F 2) = 0.227
  • S = 1.04
  • 2223 reflections
  • 170 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035971/hb5075sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035971/hb5075Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Program for New Century Excellent Talents in University for a research grant.

supplementary crystallographic information

Comment

Schiff base metal complexes have been of interest in coordination chemistry for many years due to their facile synthesis, strong coordination function and wide applications (e.g. Sawant, et al., 2009). Ca complexes with Schiff base ligand have received little attention. In this paper, we report on the synthesis and crystal structure of the title compound, (I), (Scheme I).

The Ca(II) center is Six-coordinate with two O donors of 2-formyl-benzenesulfonate-thiosemicarbazide ligands and four O donors of coordinated water molecules, and adopts distorted octahedral coordination. The bond distances of Ca—O are in the range of 2.310 (4)–2.362 (4), which are consistent with the bond lengths reported previously. In the crystal packing, the molecules form a one-dimensional chain structure by the interaction of hydrogen bonds.

Experimental

A solution of 1.0 mmol 2-formyl-benzenesulfonate-thiosemicarbazide was added to a solution of 0.5 mmol Ca(ClO4)2.4H2O in 5 ml e thanol at room temperature. The mixture was refluxed for 4 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Colourless blocks of (I) were obtained by slowly evaporating from methanol at room temperature.

Figures

Fig. 1.
The molecular structure of (I) showing 30% displacement ellipsoids. Unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z).

Crystal data

[Ca(C8H8N3O3S2)2(H2O)4]Z = 1
Mr = 628.73F(000) = 326
Triclinic, P1Dx = 1.599 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9123 (11) ÅCell parameters from 1563 reflections
b = 9.6383 (13) Åθ = 3.6–27.6°
c = 10.9481 (17) ŵ = 0.62 mm1
α = 64.372 (1)°T = 298 K
β = 87.708 (2)°Block, colourless
γ = 83.225 (2)°0.31 × 0.15 × 0.12 mm
V = 652.99 (17) Å3

Data collection

Bruker SMART CCD diffractometer2223 independent reflections
Radiation source: fine-focus sealed tube1781 reflections with I > 2σ(I)
graphiteRint = 0.0000
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan SADABS (Bruker, 2000)h = −8→8
Tmin = 0.831, Tmax = 0.929k = −10→11
2223 measured reflectionsl = −9→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.1501P)2 + 0.6556P] where P = (Fo2 + 2Fc2)/3
2223 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ca10.50000.50000.50000.0345 (5)
S10.7458 (2)0.67806 (16)0.65974 (13)0.0354 (4)
S21.0140 (3)−0.13332 (17)1.21326 (16)0.0449 (5)
O10.6451 (7)0.5503 (5)0.6662 (4)0.0438 (11)
O20.6760 (7)0.8251 (5)0.5486 (4)0.0501 (12)
O30.9554 (7)0.6437 (6)0.6624 (5)0.0507 (12)
O40.7857 (7)0.5634 (6)0.3822 (5)0.0556 (13)
H4C0.83640.64740.34010.083*
H4D0.85920.49140.37300.083*
O50.6194 (10)0.2408 (6)0.5851 (8)0.096 (3)
H5C0.55280.18780.56110.143*
H5D0.70930.18060.63940.143*
N10.9136 (7)0.1670 (6)1.0860 (5)0.0354 (11)
H10.95410.15871.01390.043*
N20.8339 (7)0.3076 (5)1.0789 (5)0.0337 (11)
N30.8802 (9)0.0645 (6)1.3157 (5)0.0506 (14)
H3A0.84200.15651.30710.061*
H3B0.8874−0.01231.39470.061*
C10.9278 (8)0.0419 (6)1.2074 (6)0.0353 (13)
C20.8137 (8)0.4179 (6)0.9586 (6)0.0352 (12)
H20.85290.40010.88380.042*
C30.7269 (8)0.5739 (6)0.9407 (5)0.0309 (12)
C40.6848 (8)0.6971 (6)0.8118 (5)0.0311 (12)
C50.6039 (9)0.8407 (7)0.7991 (6)0.0390 (13)
H50.57910.92110.71330.047*
C60.5592 (9)0.8668 (7)0.9128 (7)0.0429 (14)
H60.50310.96350.90340.052*
C70.5998 (9)0.7453 (8)1.0420 (7)0.0441 (15)
H70.57210.76151.11900.053*
C80.6807 (9)0.6020 (7)1.0545 (6)0.0369 (13)
H80.70540.52191.14060.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ca10.0392 (9)0.0391 (9)0.0220 (8)−0.0068 (7)−0.0025 (6)−0.0094 (7)
S10.0473 (9)0.0352 (8)0.0200 (7)−0.0087 (6)−0.0001 (6)−0.0074 (6)
S20.0613 (11)0.0331 (8)0.0317 (8)−0.0016 (7)−0.0043 (7)−0.0066 (7)
O10.069 (3)0.044 (2)0.0195 (19)−0.016 (2)−0.0045 (18)−0.0119 (18)
O20.080 (3)0.040 (2)0.023 (2)−0.011 (2)−0.005 (2)−0.0059 (19)
O30.053 (3)0.066 (3)0.042 (3)−0.011 (2)0.008 (2)−0.031 (2)
O40.056 (3)0.058 (3)0.053 (3)−0.017 (2)0.019 (2)−0.023 (2)
O50.103 (5)0.043 (3)0.123 (6)0.013 (3)−0.073 (4)−0.018 (3)
N10.042 (3)0.034 (2)0.022 (2)0.001 (2)−0.0021 (19)−0.005 (2)
N20.038 (3)0.030 (2)0.029 (3)−0.0019 (19)−0.0006 (19)−0.009 (2)
N30.082 (4)0.034 (3)0.024 (3)0.000 (3)0.000 (2)−0.004 (2)
C10.040 (3)0.035 (3)0.025 (3)−0.007 (2)−0.003 (2)−0.006 (2)
C20.039 (3)0.034 (3)0.027 (3)−0.004 (2)−0.004 (2)−0.008 (2)
C30.032 (3)0.031 (3)0.026 (3)−0.008 (2)−0.005 (2)−0.007 (2)
C40.032 (3)0.033 (3)0.025 (3)−0.010 (2)0.002 (2)−0.008 (2)
C50.045 (3)0.031 (3)0.032 (3)−0.005 (2)−0.003 (2)−0.005 (2)
C60.047 (3)0.040 (3)0.045 (4)0.000 (3)0.000 (3)−0.021 (3)
C70.055 (4)0.047 (3)0.037 (3)−0.013 (3)0.007 (3)−0.023 (3)
C80.045 (3)0.037 (3)0.028 (3)−0.008 (2)−0.001 (2)−0.012 (2)

Geometric parameters (Å, °)

Ca1—O4i2.310 (4)N1—H10.8600
Ca1—O42.310 (4)N2—C21.286 (7)
Ca1—O52.313 (6)N3—C11.318 (8)
Ca1—O5i2.313 (6)N3—H3A0.8599
Ca1—O12.362 (4)N3—H3B0.8599
Ca1—O1i2.362 (4)C2—C31.484 (8)
S1—O31.446 (5)C2—H20.9300
S1—O21.455 (4)C3—C81.403 (8)
S1—O11.459 (4)C3—C41.410 (8)
S1—C41.781 (6)C4—C51.380 (9)
S2—C11.698 (6)C5—C61.389 (9)
O4—H4C0.8497C5—H50.9300
O4—H4D0.8503C6—C71.405 (10)
O5—H5C0.8504C6—H60.9300
O5—H5D0.8499C7—C81.378 (9)
N1—C11.351 (7)C7—H70.9300
N1—N21.372 (7)C8—H80.9300
O4i—Ca1—O4180.0H5C—O5—H5D108.9
O4i—Ca1—O590.5 (2)C1—N1—N2119.3 (5)
O4—Ca1—O589.5 (2)C1—N1—H1120.4
O4i—Ca1—O5i89.5 (2)N2—N1—H1120.3
O4—Ca1—O5i90.5 (2)C2—N2—N1115.2 (5)
O5—Ca1—O5i180.0C1—N3—H3A119.7
O4i—Ca1—O194.41 (17)C1—N3—H3B120.2
O4—Ca1—O185.59 (17)H3A—N3—H3B120.0
O5—Ca1—O196.42 (19)N3—C1—N1117.5 (5)
O5i—Ca1—O183.58 (19)N3—C1—S2123.7 (4)
O4i—Ca1—O1i85.59 (17)N1—C1—S2118.8 (5)
O4—Ca1—O1i94.41 (17)N2—C2—C3119.1 (6)
O5—Ca1—O1i83.58 (19)N2—C2—H2120.5
O5i—Ca1—O1i96.42 (19)C3—C2—H2120.5
O1—Ca1—O1i180.0C8—C3—C4117.7 (5)
O4i—Ca1—H5C83.1C8—C3—C2119.9 (5)
O4—Ca1—H5C96.9C4—C3—C2122.3 (5)
O5—Ca1—H5C16.4C5—C4—C3120.7 (5)
O5i—Ca1—H5C163.6C5—C4—S1117.3 (4)
O1—Ca1—H5C111.4C3—C4—S1121.9 (4)
O1i—Ca1—H5C68.6C4—C5—C6120.9 (6)
O3—S1—O2113.0 (3)C4—C5—H5119.5
O3—S1—O1112.4 (3)C6—C5—H5119.5
O2—S1—O1112.7 (3)C5—C6—C7119.1 (6)
O3—S1—C4106.2 (3)C5—C6—H6120.4
O2—S1—C4106.4 (3)C7—C6—H6120.4
O1—S1—C4105.5 (2)C8—C7—C6119.9 (6)
S1—O1—Ca1133.1 (2)C8—C7—H7120.1
Ca1—O4—H4C134.2C6—C7—H7120.1
Ca1—O4—H4D117.6C7—C8—C3121.6 (6)
H4C—O4—H4D108.2C7—C8—H8119.2
Ca1—O5—H5C113.7C3—C8—H8119.2
Ca1—O5—H5D137.2
O3—S1—O1—Ca1−98.8 (4)C8—C3—C4—S1177.3 (4)
O2—S1—O1—Ca130.3 (5)C2—C3—C4—S1−3.8 (7)
C4—S1—O1—Ca1145.9 (3)O3—S1—C4—C5115.4 (5)
O4i—Ca1—O1—S1−131.7 (4)O2—S1—C4—C5−5.2 (5)
O4—Ca1—O1—S148.3 (4)O1—S1—C4—C5−125.1 (5)
O5—Ca1—O1—S1137.3 (4)O3—S1—C4—C3−61.0 (5)
O5i—Ca1—O1—S1−42.7 (4)O2—S1—C4—C3178.4 (4)
O1i—Ca1—O1—S161 (12)O1—S1—C4—C358.5 (5)
C1—N1—N2—C2−175.4 (5)C3—C4—C5—C6−1.1 (9)
N2—N1—C1—N3−6.2 (8)S1—C4—C5—C6−177.5 (4)
N2—N1—C1—S2176.3 (4)C4—C5—C6—C70.9 (9)
N1—N2—C2—C3179.4 (5)C5—C6—C7—C8−0.8 (9)
N2—C2—C3—C84.4 (8)C6—C7—C8—C30.9 (9)
N2—C2—C3—C4−174.4 (5)C4—C3—C8—C7−1.0 (8)
C8—C3—C4—C51.1 (8)C2—C3—C8—C7−179.9 (5)
C2—C3—C4—C5180.0 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···N20.862.282.636 (7)105
O5—H5C···O2i0.852.072.840 (9)150
N1—H1···S2ii0.862.603.441 (6)166
N3—H3B···O2iii0.862.343.035 (7)138
O4—H4C···S2iv0.852.423.261 (6)173
O4—H4D···O3v0.851.872.712 (8)171
O5—H5D···S2ii0.852.423.197 (8)152

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y, −z+2; (iii) x, y−1, z+1; (iv) x, y+1, z−1; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5075).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sawant, S. K., Gaikwad, G. A., Sawant, V. A., Yamgar, B. A. & Chavan, S. S. (2009). Inorg. Chem. Commun.12, 632–633.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography