PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2438.
Published online 2009 September 12. doi:  10.1107/S1600536809034783
PMCID: PMC2970439

4,4′-Bipyridine–2,3,4,5,6-penta­fluoro­benzoic acid (1/2)

Abstract

In the title 1:2 adduct, C10H8N2·2C7HF5O2, the complete 4,4′-bipyridine mol­ecule is generated by a crystallographic twofold axis. The components of the adduct are linked by inter­molecular O—H(...)N hydrogen bonds and further connected by a combination of C—H(...)O, C—H(...)F and F(...)F [2.859 (2) Å] inter­actions.

Related literature

For further discussion of inter­molecular inter­actions involving fluorine atoms, see, for example: Chopra & Row (2008 [triangle]); Choudhury & Row (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2438-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·2C7HF5O2
  • M r = 580.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2438-efi1.jpg
  • a = 17.910 (3) Å
  • b = 10.7016 (19) Å
  • c = 13.498 (3) Å
  • β = 119.631 (3)°
  • V = 2248.8 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 296 K
  • 0.30 × 0.28 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.946, T max = 0.974
  • 6884 measured reflections
  • 2695 independent reflections
  • 2060 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.120
  • S = 1.05
  • 2695 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809034783/hb5082sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034783/hb5082Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Project of the Provincial Key Laboratory of Liaoning Province, China (No. 2008S104), the Project for Innovation Teams of Liaoning Province, China (No. 2007 T052) and the Doctoral Start-up Project of Liaoning University.

supplementary crystallographic information

Comment

Weak interactions involving fluorine is of great interest and importance in producing new suppramolecular assemblies. Fluorine can provide C—H···F, N—H···F hydrogen bonds (e.g. Chopra & Row, 2008) as well as C—F···F and C—F···π interactions (e.g. Choudhury & Row, 2004). in crystal engineering. Fluorine derivatives have generated a wide variety of crystal structures. The title molecular complex is composed of 4,4'-bipyridine and 2,3,4,5,6-pentafluorobenzoic acid with the molar ratio of 1:2 to form a basic unit. The components are linked by O—H···N hdrogen bond (O2···N1 2.602 (2) Å, O2—H2···N1 176 °) (Fig. 1). C9—H9···O1 weak hydrogen bond further strengthen the connection (Table 1). Intermolecular C10—H10···O1(symmery code: -x + 1, -y + 1, -z + 1), C12—H12···F5, C13—H13···F5 (symmery code: x, -y + 2, z + 1/2) hydrogen bonds and F1···F3 [2.859 (2) Å, symmery code: x, -y, -1/2 + z] interaction link these units further.

Experimental

A solution of 4,4'-bipyridine (2 mmol) in ethanol (5 ml) was added into 2,3,4,5,6-pentafluorobenzoic acid (4 mmol) in ethanol(20 ml). The mixture was refluxed with stirring for 10 min. The resultant solution was filtered. Colourless blocks of (I) were formed after a few days of slow evaporation of the solvent at room temperature.

Refinement

All H atoms were placed in calculated positions and included in a riding-model approximation, with C—H = 0.93 Å, O—H = 0.82Å and Uiso(H)= 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
The structure of title adduct. Displacement ellipsoids are drawn at the 30% probability level. Atoms with the suffic A are generated by the symmetry operation (1–x, y, 3/2–z).

Crystal data

C10H8N2·2C7HF5O2F(000) = 1160
Mr = 580.34Dx = 1.714 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 187 reflections
a = 17.910 (3) Åθ = 2.2–22.0°
b = 10.7016 (19) ŵ = 0.17 mm1
c = 13.498 (3) ÅT = 296 K
β = 119.631 (3)°BLOCK, colorless
V = 2248.8 (7) Å30.30 × 0.28 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2695 independent reflections
Radiation source: fine-focus sealed tube2060 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −23→22
Tmin = 0.946, Tmax = 0.974k = −14→11
6884 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.120w = 1/[σ2(Fo2) + (0.0524P)2 + 1.397P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2695 reflectionsΔρmax = 0.25 e Å3
183 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C100.49615 (12)0.70420 (16)0.63825 (14)0.0565 (4)
H100.52080.63300.68180.068*
C120.44977 (12)0.91468 (15)0.61897 (14)0.0541 (4)
H120.44290.98900.64930.065*
C130.42370 (13)0.90600 (16)0.50439 (14)0.0578 (5)
H130.39840.97550.45840.069*
C90.46907 (12)0.70404 (16)0.52338 (15)0.0574 (4)
H90.47620.63160.49100.069*
C110.48637 (10)0.81117 (13)0.68843 (12)0.0430 (3)
N10.43312 (9)0.80276 (13)0.45658 (11)0.0516 (4)
F10.31878 (9)0.41200 (10)0.13362 (9)0.0756 (4)
F50.38044 (8)0.81354 (10)0.04501 (10)0.0727 (4)
F20.24519 (9)0.35110 (11)−0.08528 (10)0.0807 (4)
O20.38410 (9)0.76706 (11)0.24230 (10)0.0624 (4)
H20.40190.77810.31050.094*
F40.30691 (9)0.74859 (12)−0.17270 (10)0.0802 (4)
F30.23514 (9)0.51811 (12)−0.24105 (8)0.0766 (4)
C20.35217 (10)0.61682 (14)0.09940 (12)0.0442 (3)
C30.31759 (11)0.49867 (15)0.06163 (13)0.0490 (4)
O10.42833 (13)0.57290 (14)0.29718 (11)0.0921 (6)
C70.34739 (11)0.69832 (14)0.01702 (14)0.0475 (4)
C40.27894 (12)0.46524 (15)−0.05187 (14)0.0529 (4)
C50.27456 (11)0.54934 (17)−0.13111 (13)0.0524 (4)
C10.39257 (11)0.65043 (16)0.22420 (13)0.0512 (4)
C60.30987 (12)0.66596 (16)−0.09672 (14)0.0527 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C100.0778 (12)0.0382 (8)0.0439 (9)0.0111 (8)0.0227 (8)0.0021 (6)
C120.0787 (11)0.0355 (8)0.0413 (8)0.0068 (8)0.0244 (8)−0.0005 (6)
C130.0836 (12)0.0384 (8)0.0409 (8)0.0075 (8)0.0229 (8)0.0029 (7)
C90.0754 (11)0.0435 (9)0.0466 (9)0.0083 (8)0.0250 (8)−0.0065 (7)
C110.0513 (8)0.0341 (7)0.0379 (8)−0.0014 (6)0.0177 (6)−0.0004 (6)
N10.0633 (8)0.0464 (8)0.0388 (7)0.0000 (6)0.0205 (6)−0.0036 (5)
F10.1289 (11)0.0458 (6)0.0587 (6)−0.0090 (6)0.0515 (7)0.0036 (5)
F50.1063 (9)0.0427 (6)0.0662 (7)−0.0179 (6)0.0403 (7)−0.0041 (5)
F20.1197 (10)0.0498 (6)0.0704 (7)−0.0246 (7)0.0454 (7)−0.0210 (5)
O20.0914 (9)0.0431 (6)0.0387 (6)0.0117 (6)0.0214 (6)−0.0040 (5)
F40.1189 (10)0.0679 (8)0.0561 (6)0.0000 (7)0.0450 (7)0.0184 (6)
F30.1011 (9)0.0798 (8)0.0386 (5)−0.0019 (7)0.0268 (6)−0.0116 (5)
C20.0529 (8)0.0380 (7)0.0384 (7)0.0070 (6)0.0200 (7)−0.0006 (6)
C30.0690 (10)0.0380 (8)0.0429 (8)0.0035 (7)0.0298 (8)0.0024 (6)
O10.1500 (15)0.0554 (8)0.0406 (7)0.0404 (9)0.0239 (8)0.0032 (6)
C70.0571 (9)0.0352 (7)0.0473 (8)0.0003 (7)0.0236 (7)−0.0007 (6)
C40.0691 (11)0.0394 (8)0.0505 (9)−0.0048 (7)0.0298 (8)−0.0087 (7)
C50.0616 (10)0.0552 (10)0.0365 (8)0.0046 (8)0.0213 (7)−0.0049 (7)
C10.0627 (10)0.0439 (9)0.0390 (8)0.0103 (7)0.0190 (7)−0.0018 (6)
C60.0677 (10)0.0478 (9)0.0440 (8)0.0054 (8)0.0287 (8)0.0088 (7)

Geometric parameters (Å, °)

C10—C91.377 (2)F2—C41.3383 (19)
C10—C111.385 (2)O2—C11.295 (2)
C10—H100.9300O2—H20.8200
C12—C131.380 (2)F4—C61.3352 (19)
C12—C111.389 (2)F3—C51.3328 (18)
C12—H120.9300C2—C71.382 (2)
C13—N11.332 (2)C2—C31.389 (2)
C13—H130.9300C2—C11.512 (2)
C9—N11.330 (2)C3—C41.380 (2)
C9—H90.9300O1—C11.202 (2)
C11—C11i1.483 (3)C7—C61.381 (2)
F1—C31.3358 (18)C4—C51.370 (2)
F5—C71.3388 (18)C5—C61.372 (3)
C9—C10—C11119.51 (15)C3—C2—C1120.42 (14)
C9—C10—H10120.2F1—C3—C4116.50 (15)
C11—C10—H10120.2F1—C3—C2121.41 (14)
C13—C12—C11119.23 (15)C4—C3—C2122.08 (15)
C13—C12—H12120.4F5—C7—C6116.66 (14)
C11—C12—H12120.4F5—C7—C2120.75 (14)
N1—C13—C12123.04 (15)C6—C7—C2122.59 (15)
N1—C13—H13118.5F2—C4—C5119.63 (15)
C12—C13—H13118.5F2—C4—C3120.38 (15)
N1—C9—C10123.05 (16)C5—C4—C3119.99 (16)
N1—C9—H9118.5F3—C5—C4119.92 (16)
C10—C9—H9118.5F3—C5—C6120.44 (16)
C10—C11—C12117.44 (14)C4—C5—C6119.63 (15)
C10—C11—C11i119.81 (10)O1—C1—O2125.12 (15)
C12—C11—C11i122.74 (10)O1—C1—C2121.09 (15)
C9—N1—C13117.73 (14)O2—C1—C2113.78 (14)
C1—O2—H2109.5F4—C6—C5120.39 (15)
C7—C2—C3116.11 (14)F4—C6—C7120.03 (16)
C7—C2—C1123.47 (15)C5—C6—C7119.57 (15)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.782.602 (2)176
C9—H9···O10.932.403.102 (2)132
C10—H10···O1ii0.932.353.196 (2)152
C12—H12···F5iii0.932.483.126 (2)127
C13—H13···F5iii0.932.633.214 (2)121

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5082).

References

  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chopra, D. & Row, T. N. G. (2008). CrystEngComm, 10, 54–67.
  • Choudhury, A. R. & Row, T. N. G. (2004). Cryst. Growth Des.4, 47–52 .
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography