PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2499.
Published online 2009 September 19. doi:  10.1107/S1600536809036927
PMCID: PMC2970438

Ethyl 3-oxo-2-[(4-sulfamoylphen­yl)hydra­zono]butyrate

Abstract

In the title compound, C12H15N3O5S, an intra­molecular N—H(...)O hydrogen bond between the hydrazine unit and one of the carbonyl groups may influence the mol­ecular conformation. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds, including one which is bifurcated, link the mol­ecules into a two-dimensional network.

Related literature

For background to sulfa drugs and their derivatives, see: Abbate et al. (2004 [triangle]); Badr (2008 [triangle]); Hanafy et al. (2007 [triangle]); Novinson et al. (1976 [triangle]); Supuran et al. (2003 [triangle]); Upadhyay et al. (2009 [triangle]); Zhong et al. (2007 [triangle]). For the synthesis of the title compound, see: Prakash & Gambhir (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2499-scheme1.jpg

Experimental

Crystal data

  • C12H15N3O5S
  • M r = 313.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2499-efi1.jpg
  • a = 7.490 (6) Å
  • b = 14.819 (12) Å
  • c = 12.689 (10) Å
  • β = 95.219 (14)°
  • V = 1402.6 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 293 K
  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.940, T max = 0.951
  • 11777 measured reflections
  • 3274 independent reflections
  • 2177 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.222
  • S = 0.87
  • 3274 reflections
  • 200 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036927/lh2879sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036927/lh2879Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KKU and SU are grateful to the CSIR, New Delhi, for financial support.

supplementary crystallographic information

Comment

Sulfadrugs and their derivatives have attracted much attention due to their wide spectrum of pharamaceutical (Abbate et al., 2004; Badr, 2008; Supuran et al., 2003) and biological applications (Hanafy et al., 2007, Zhong et al., 2007). Recently we reported details of a diazo derivative of sulfathiazole (Upadhyay et al.,2009) as a naked eye sensor for Hg(II) in DMSO. Although the title compound (I) has been reported in the literature (Prakash & Gambhir, 1964) its crystal structure determination has not been undertaken until now.

The molecular structure of the title compound is shown in Fig. 1. An intramolecular N—H···O hydrogen bond between the hydrazine unit and one carbonyl groups may influence the molecular conformation. In the crystal structure, intermolecular N—H···O hydrogen bonds, including one which which is bifurcated, link molecules in a two-dimensional network (see Fig. 2).

Experimental

Compound (I) was synthesized using the literature procedure (Novinson et al., 1976) as follows. Sulphanilamide (2 mmol, 344 mg) and sodium nitrite (~4 mmol, 300 mg) were dissolved separately in conc. HCl (2 ml) and distilled water (10 ml), respectively, followed by cooling on crushed ice. The cooled sodium nitrite solution was added to the sulphanilamide solution with constant stirring while maintaining the temperature. The resulting yellow solution was added to a mixture of ethyl aceto acetate (2 mmol, 0.25 ml) and sodium acetate (~37 mmol, 3 g) in distilled water (15 ml) with continuous stirring. The stirring was continued further for 2 h maintaining the temperature of the reaction vessel between 293–298 K. The resulting solids were filtered, washed with water, ethanol and finally, by diethyl ether. The crude product was recrystallized from a water–ethanol mixture (50% v/v) and dried in vacuo. Crystals were grown by layering a supersaturated solution of (I) in ethanol with diethylether and leaving for a few days.

Yield 76%. Spectroscopic anaylysis: 1HNMR (DMSO-d6, TMS, δp.p.m.) 11.60 (1H, –HN—N=C<), 7.85–7.54 (m, 4H, Ar—H), 7.34 (s, 2H, NH2),4.35–4.26 (2H, CH2), 2.50–2.42(3H, CH3 of C2H5), 1.33–1.26 (3H, CH3). 13C NMR (DMSO-d6, TMS, δ p.p.m.) 193.90 (>C=O),162.33 [C(OEt)=O], 145.16,138.31(C=C), 133.35, 127.36, 115.89, 114.76 (Ar—C), 61.37 (–CH2), 25.28,13.83 (–CH3).

Refinement

H atoms were placed in calculated positions with C-H = 0.93 - 0.97Å and N-H = 0.86Å. They were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C) for methyl H atoms. The H atoms of the -NH2 group were refined independently with isotropic displacement parameters.

Figures

Fig. 1.
The molecular structure of compound (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure of (I) showing intramolecular and intermolecular hydrogen bonds as hashed lines.

Crystal data

C12H15N3O5SF(000) = 656
Mr = 313.33Dx = 1.484 Mg m3
Monoclinic, P21/nMelting point: 398 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.490 (6) ÅCell parameters from 598 reflections
b = 14.819 (12) Åθ = 2.5–27.5°
c = 12.689 (10) ŵ = 0.26 mm1
β = 95.219 (14)°T = 293 K
V = 1402.6 (19) Å3Rectangular, colourless
Z = 40.24 × 0.22 × 0.20 mm

Data collection

Bruker SMART APEX diffractometer3274 independent reflections
Radiation source: fine-focus sealed tube2177 reflections with I > 2σ(I)
graphiteRint = 0.052
Detector resolution: 0.3 pixels mm-1θmax = 28.2°, θmin = 2.1°
ω scansh = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −17→19
Tmin = 0.940, Tmax = 0.951l = −16→16
11777 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full with fixed elements per cycleSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 0.87w = 1/[σ2(Fo2) + (0.1321P)2 + 2.1941P] where P = (Fo2 + 2Fc2)/3
3274 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2438 (5)0.0661 (2)0.9456 (3)0.0391 (8)
C20.2126 (5)0.1343 (2)1.0159 (3)0.0429 (8)
H20.19830.12091.08620.051*
C30.2030 (5)0.2223 (2)0.9809 (3)0.0433 (8)
H30.18090.26841.02780.052*
C40.2258 (5)0.2424 (2)0.8772 (2)0.0372 (7)
C50.2609 (6)0.1745 (2)0.8081 (3)0.0518 (10)
H50.27900.18830.73840.062*
C60.2693 (6)0.0861 (2)0.8420 (3)0.0536 (10)
H60.29200.04010.79510.064*
C70.2498 (5)−0.1296 (2)1.1080 (3)0.0400 (8)
C80.2482 (5)−0.1381 (2)1.2239 (3)0.0451 (9)
C90.2452 (7)−0.0539 (3)1.2876 (3)0.0659 (13)
H9A0.2411−0.06911.36090.099*
H9B0.1412−0.01901.26390.099*
H9C0.3513−0.01931.27910.099*
C100.2599 (5)−0.2072 (2)1.0344 (3)0.0466 (9)
C110.2122 (7)−0.3643 (3)0.9952 (4)0.0624 (12)
H11A0.1498−0.41471.02400.075*
H11B0.1458−0.34580.92960.075*
C120.3910 (8)−0.3914 (3)0.9752 (5)0.0868 (17)
H12A0.4491−0.34270.94190.130*
H12B0.3847−0.44310.92940.130*
H12C0.4583−0.40641.04090.130*
H3A0.042 (6)0.330 (3)0.688 (4)0.055 (13)*
H3B−0.064 (6)0.334 (3)0.769 (4)0.049 (14)*
N10.2500 (4)−0.02524 (19)0.9754 (2)0.0469 (8)
H10.2567−0.06670.92860.056*
N20.2454 (4)−0.0464 (2)1.0745 (2)0.0417 (7)
N30.0211 (6)0.3532 (2)0.7471 (3)0.0481 (8)
O10.1619 (4)0.40903 (16)0.9163 (2)0.0565 (8)
O20.3416 (4)0.37652 (19)0.7692 (2)0.0581 (8)
O40.2924 (5)−0.19684 (19)0.9443 (2)0.0711 (10)
O50.2233 (5)−0.28696 (17)1.0729 (2)0.0620 (8)
O60.2547 (5)−0.21135 (18)1.2667 (2)0.0703 (9)
S10.19753 (14)0.35341 (5)0.82925 (7)0.0425 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.049 (2)0.0279 (16)0.0399 (17)0.0027 (14)0.0025 (15)0.0052 (13)
C20.062 (2)0.0381 (18)0.0278 (15)0.0020 (16)0.0020 (15)0.0040 (13)
C30.064 (2)0.0317 (17)0.0343 (16)0.0012 (15)0.0031 (15)−0.0030 (13)
C40.052 (2)0.0285 (15)0.0305 (15)−0.0009 (14)0.0022 (14)0.0018 (12)
C50.090 (3)0.0346 (18)0.0333 (17)0.0059 (19)0.0183 (18)0.0050 (14)
C60.094 (3)0.0294 (17)0.0392 (19)0.0098 (19)0.0148 (19)0.0008 (14)
C70.050 (2)0.0328 (17)0.0372 (17)−0.0006 (14)0.0043 (15)0.0048 (13)
C80.055 (2)0.0417 (19)0.0383 (18)−0.0101 (16)0.0017 (16)0.0054 (15)
C90.107 (4)0.049 (2)0.043 (2)−0.015 (2)0.010 (2)−0.0031 (18)
C100.064 (2)0.0351 (18)0.0416 (19)0.0099 (16)0.0103 (17)0.0076 (15)
C110.087 (3)0.043 (2)0.059 (3)−0.006 (2)0.021 (2)0.0042 (18)
C120.091 (4)0.053 (3)0.112 (5)0.004 (3)−0.009 (3)0.000 (3)
N10.073 (2)0.0307 (15)0.0374 (15)0.0042 (14)0.0051 (14)0.0063 (12)
N20.0537 (18)0.0352 (15)0.0361 (14)−0.0017 (13)0.0032 (12)0.0083 (12)
N30.065 (2)0.0373 (17)0.0423 (18)0.0005 (16)0.0055 (16)0.0075 (14)
O10.088 (2)0.0294 (12)0.0521 (15)−0.0011 (13)0.0082 (14)−0.0060 (11)
O20.0708 (19)0.0462 (15)0.0591 (17)−0.0080 (13)0.0152 (14)0.0121 (13)
O40.134 (3)0.0380 (15)0.0465 (15)0.0136 (16)0.0350 (18)0.0071 (12)
O50.113 (2)0.0307 (13)0.0460 (15)0.0019 (14)0.0270 (15)0.0046 (11)
O60.129 (3)0.0427 (16)0.0384 (14)−0.0148 (17)0.0026 (16)0.0117 (12)
S10.0625 (6)0.0252 (4)0.0400 (5)−0.0026 (4)0.0053 (4)0.0042 (3)

Geometric parameters (Å, °)

C1—C61.379 (5)C9—H9B0.9600
C1—C21.382 (5)C9—H9C0.9600
C1—N11.404 (4)C10—O41.200 (4)
C2—C31.378 (5)C10—O51.317 (4)
C2—H20.9300C11—C121.443 (7)
C3—C41.375 (5)C11—O51.509 (5)
C3—H30.9300C11—H11A0.9700
C4—C51.376 (5)C11—H11B0.9700
C4—S11.760 (3)C12—H12A0.9600
C5—C61.379 (5)C12—H12B0.9600
C5—H50.9300C12—H12C0.9600
C6—H60.9300N1—N21.300 (4)
C7—N21.304 (4)N1—H10.8600
C7—C81.477 (5)N3—S11.607 (4)
C7—C101.488 (5)N3—H3A0.85 (5)
C8—O61.213 (4)N3—H3B0.77 (4)
C8—C91.488 (5)O1—S11.423 (3)
C9—H9A0.9600O2—S11.419 (3)
C6—C1—C2120.3 (3)O4—C10—O5122.4 (4)
C6—C1—N1117.4 (3)O4—C10—C7121.7 (3)
C2—C1—N1122.3 (3)O5—C10—C7115.9 (3)
C3—C2—C1119.5 (3)C12—C11—O5109.3 (4)
C3—C2—H2120.3C12—C11—H11A109.8
C1—C2—H2120.3O5—C11—H11A109.8
C4—C3—C2120.4 (3)C12—C11—H11B109.8
C4—C3—H3119.8O5—C11—H11B109.8
C2—C3—H3119.8H11A—C11—H11B108.3
C3—C4—C5120.0 (3)C11—C12—H12A109.5
C3—C4—S1120.8 (3)C11—C12—H12B109.5
C5—C4—S1119.1 (3)H12A—C12—H12B109.5
C4—C5—C6120.1 (3)C11—C12—H12C109.5
C4—C5—H5119.9H12A—C12—H12C109.5
C6—C5—H5119.9H12B—C12—H12C109.5
C1—C6—C5119.7 (3)N2—N1—C1119.3 (3)
C1—C6—H6120.1N2—N1—H1120.3
C5—C6—H6120.1C1—N1—H1120.3
N2—C7—C8113.7 (3)N1—N2—C7122.7 (3)
N2—C7—C10121.9 (3)S1—N3—H3A111 (3)
C8—C7—C10124.4 (3)S1—N3—H3B115 (3)
O6—C8—C7121.2 (3)H3A—N3—H3B113 (5)
O6—C8—C9120.6 (3)C10—O5—C11116.1 (3)
C7—C8—C9118.1 (3)O2—S1—O1118.86 (18)
C8—C9—H9A109.5O2—S1—N3105.8 (2)
C8—C9—H9B109.5O1—S1—N3107.7 (2)
H9A—C9—H9B109.5O2—S1—C4109.76 (17)
C8—C9—H9C109.5O1—S1—C4107.32 (16)
H9A—C9—H9C109.5N3—S1—C4106.76 (17)
H9B—C9—H9C109.5
C6—C1—C2—C31.5 (6)N2—C7—C10—O5−165.3 (4)
N1—C1—C2—C3−178.1 (3)C8—C7—C10—O516.2 (6)
C1—C2—C3—C4−0.6 (6)C6—C1—N1—N2172.9 (4)
C2—C3—C4—C5−0.9 (6)C2—C1—N1—N2−7.5 (5)
C2—C3—C4—S1175.3 (3)C1—N1—N2—C7179.7 (3)
C3—C4—C5—C61.5 (6)C8—C7—N2—N1178.4 (3)
S1—C4—C5—C6−174.8 (3)C10—C7—N2—N1−0.2 (6)
C2—C1—C6—C5−1.0 (6)O4—C10—O5—C11−4.0 (6)
N1—C1—C6—C5178.7 (4)C7—C10—O5—C11173.1 (3)
C4—C5—C6—C1−0.5 (7)C12—C11—O5—C1077.1 (5)
N2—C7—C8—O6−178.8 (4)C3—C4—S1—O2133.9 (3)
C10—C7—C8—O6−0.3 (6)C5—C4—S1—O2−49.9 (4)
N2—C7—C8—C9−1.0 (5)C3—C4—S1—O13.4 (4)
C10—C7—C8—C9177.5 (4)C5—C4—S1—O1179.6 (3)
N2—C7—C10—O411.8 (6)C3—C4—S1—N3−111.9 (3)
C8—C7—C10—O4−166.7 (4)C5—C4—S1—N364.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.952.597 (5)131
N3—H3B···O6i0.77 (5)2.33 (4)2.941 (6)137 (4)
N3—H3B···O5i0.77 (5)2.52 (5)3.208 (6)149 (5)
N3—H3A···O4ii0.85 (5)2.21 (5)3.003 (6)154 (4)

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2879).

References

  • Abbate, F., Casini, A., Owa, T., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett.14, 217–223. [PubMed]
  • Badr, E. E. (2008). J. Disper. Sci. Technol.29,1143–1149.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn J. Med. Mycol.48, 47–50. [PubMed]
  • Novinson, T., Okabe, T., Robins, R. K. & Matthews, T. R. (1976). J. Med. Chem.19, 517–520. [PubMed]
  • Prakash, A. & Gambhir, I. R. (1964). J. Indian Chem. Soc. 41, 133–136.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev.23, 535–558. [PubMed]
  • Upadhyay, K. K., Upadhyay, S., Kumar, K. & Prasad, R. (2009). J. Mol. Struct. 927, 60–68.
  • Zhong, Z., Chen, R., Xing, R., Chen, X., Liu, S., Guo, Z., Ji, X., Wang, L. & Li, P. (2007). Carbohydr. Res.342, 2390–2395. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography