PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2503.
Published online 2009 September 19. doi:  10.1107/S1600536809037283
PMCID: PMC2970418

2-(4-Bromo­phen­yl)-5,6-methyl­enedi­oxy-3-phenyl­sulfinyl-1-benzofuran benzene solvate

Abstract

In the title compound, C21H13BrO4S·C6H6, the O atom and the phenyl group of the phenyl­sulfinyl substituent are located on opposite sides of the mean plane of the 5,6-methyl­enedioxy­benzofuran fragment; the phenyl ring is almost perpendicular to this plane [83.66 (6)°]. The 4-bromo­phenyl ring is rotated slightly out of the 5,6-methyl­enedioxy­benzo­furan plane, making a dihedral angle of 2.9 (1)°. The crystal structure is stabilized by inter­molecular C—H(...)O hydrogen bonds and inter­molecular C—H(...)π inter­actions. The crystal structure also exhibits π–π inter­actions between the benzene ring and the 4-bromo­phenyl ring of an adjacent mol­ecule [centroid–centroid distance = 3.586 (3) Å].

Related literature

For the crystal structures of similar 5,6-methyl­enedi­oxy-1-benzofuran derivatives, see: Choi et al. (2007 [triangle], 2008 [triangle]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999 [triangle]); Twyman & Allsop (1999 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); von Reuss & König (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2503-scheme1.jpg

Experimental

Crystal data

  • C21H13BrO4S·C6H6
  • M r = 519.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2503-efi9.jpg
  • a = 13.8967 (7) Å
  • b = 12.6640 (7) Å
  • c = 13.0469 (7) Å
  • β = 102.418 (1)°
  • V = 2242.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.96 mm−1
  • T = 173 K
  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.629, T max = 0.679
  • 13417 measured reflections
  • 4886 independent reflections
  • 3946 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.102
  • S = 1.02
  • 4886 reflections
  • 298 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037283/kp2232sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037283/kp2232Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Benzofuran systems have been received particular attention in the view of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999). These compounds occur in natural products (Akgul & Anil, 2003; von Reuss & König, 2004). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 5,6-methylenedioxy-1-benzofuran analogues (Choi et al., 2007, 2008) we report the crystal structure of the title compound (I) co-crystallized with benzene. The 5,6-methylenedioxybenzofuran unit is planar with a mean deviation of 0.030 (2) Å from the least-squares plane defined by the twelve constituent atoms. The dihedral angle formed by the planes of the 5,6-methylenedioxybenzofuran ring and 4-bromophenyl ring is 2.9 (1)°. The phenyl ring (C16-C21) is almost perpendicular to the plane of 5,6-methylenedioxybenzofuran [83.66 (6)°]. The crystal packing (Fig. 2) is stabilized by intermolecular C–H···O hydrogen bonds between a benzene H atom of the 5,6-methylenedioxybenzofuran ring and the oxygen of the S═O unit, with a C4–H4···O4i (Table 1). The molecular packing (Fig. 3) is further stabilized by intermolecular C–H···π interactions between an H atom of the 4-bromophenyl ring and the furan ring, with a C14–H14···Cg1ii (Table 1; Cg1 is the centroid of the C1/C2/O1/C3/C9 furan ring). The crystal structure (Fig. 3) also exhibits π–π interactions between the benzene ring and the 4-bromophenyl ring of the neighbouring molecules. The Cg2···Cg3v distance is 3.586 (3) Å (Cg2 and Cg3 is the centroids of the C3/C4/C5/C7/C8/C9 benzene ring and the C10-C15 phenyl ring, respectively).

Experimental

77% 3-Chloroperoxybenzoic acid (123 mg, 0.55 mmol) was added in small portions to a stirred solution of 2-(4-bromophenyl)-5, 6-methylenedioxy-3-phenylsulfanyl-1-benzofuran (213 mg, 0.5 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colourless solid [yield 73%, m.p. 462-463 K; Rf = 0.71 (hexane-ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for the aryl and 0.97 Å for the methylene H atoms. Uiso(H) = 1.2Ueq(C) for the aryl and the methylene H atoms. The distances of C–C in the solvated benzene ring were restrained to 1.39 (1) Å using command DFIX.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
Fig. 2.
The C–H···O hydrogen bonds (dotted lines) in the crystal packing of (I). [Symmetry codes: (i) - x + 1, y + 0.5, - z + 3/2; (iii) - x + 1, y - 0.5, - z + 3/2.]
Fig. 3.
The C–H···π and π–π interactions (dotted lines) in (I). Cg denotes the ring centroids. [Symmetry codes: (ii) x, -y + 1/2, z - 1/2; (iv) x, - y + 1/2, z + 1/2; (v) - x + 1, - y + 1, - z + ...

Crystal data

C21H13BrO4S·C6H6F(000) = 1056
Mr = 519.39Dx = 1.538 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6564 reflections
a = 13.8967 (7) Åθ = 2.2–27.5°
b = 12.6640 (7) ŵ = 1.96 mm1
c = 13.0469 (7) ÅT = 173 K
β = 102.418 (1)°Block, colorless
V = 2242.4 (2) Å30.40 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer4886 independent reflections
Radiation source: fine-focus sealed tube3946 reflections with I > 2σ(I)
graphiteRint = 0.075
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.5°
[var phi] and ω scansh = −17→17
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)k = −16→8
Tmin = 0.629, Tmax = 0.679l = −15→16
13417 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.102H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0572P)2 + 0.3212P] where P = (Fo2 + 2Fc2)/3
4886 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.64 e Å3
6 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.201403 (18)0.26805 (2)0.115664 (18)0.03840 (10)
S0.63758 (4)0.22232 (4)0.56951 (4)0.02291 (13)
O10.43951 (10)0.44110 (11)0.59753 (11)0.0246 (3)
O20.57823 (12)0.58271 (13)0.94388 (13)0.0359 (4)
O30.71273 (11)0.47027 (13)0.96114 (12)0.0311 (3)
O40.68316 (11)0.16954 (12)0.67099 (11)0.0302 (3)
C10.56264 (14)0.32535 (16)0.60145 (15)0.0224 (4)
C20.47437 (14)0.36076 (16)0.54372 (16)0.0226 (4)
C30.50610 (14)0.45414 (16)0.69083 (16)0.0230 (4)
C40.49371 (15)0.52551 (17)0.76854 (17)0.0267 (4)
H40.44000.57080.76190.032*
C50.56899 (16)0.52172 (16)0.85561 (17)0.0261 (4)
C60.66481 (17)0.54604 (19)1.01496 (17)0.0324 (5)
H6A0.64720.51361.07570.039*
H6B0.70880.60481.03870.039*
C70.64952 (15)0.45403 (17)0.86521 (16)0.0250 (4)
C80.66125 (15)0.38315 (16)0.78944 (16)0.0245 (4)
H80.71520.33810.79720.029*
C90.58448 (15)0.38419 (16)0.69831 (16)0.0227 (4)
C100.41034 (15)0.33635 (16)0.44190 (16)0.0234 (4)
C110.32404 (16)0.39505 (18)0.40747 (18)0.0296 (5)
H110.30820.44820.45020.036*
C120.26182 (16)0.37585 (19)0.31148 (18)0.0319 (5)
H120.20510.41600.28950.038*
C130.28519 (16)0.29598 (18)0.24839 (17)0.0277 (5)
C140.36932 (17)0.23670 (18)0.28017 (18)0.0300 (5)
H140.38420.18330.23720.036*
C150.43210 (17)0.25665 (17)0.37660 (19)0.0291 (5)
H150.48900.21660.39770.035*
C160.73086 (15)0.30455 (17)0.53476 (16)0.0243 (4)
C170.81941 (17)0.3206 (2)0.60380 (19)0.0423 (6)
H170.83250.28860.66950.051*
C180.8888 (2)0.3853 (3)0.5735 (2)0.0584 (9)
H180.94900.39710.61930.070*
C190.8689 (2)0.4326 (3)0.4751 (2)0.0530 (8)
H190.91530.47720.45610.064*
C200.78115 (18)0.4138 (2)0.40579 (19)0.0381 (6)
H200.76880.44430.33940.046*
C210.71121 (16)0.34943 (18)0.43497 (16)0.0284 (5)
H210.65170.33630.38840.034*
C220.0616 (2)0.5412 (3)0.1216 (2)0.0578 (8)
H220.11800.51660.10170.069*
C23−0.0017 (2)0.4709 (3)0.1512 (2)0.0629 (9)
H230.01240.39910.15160.076*
C24−0.0846 (2)0.5040 (5)0.1801 (3)0.0906 (16)
H24−0.12780.45510.19870.109*
C25−0.1041 (3)0.6067 (6)0.1817 (4)0.114 (2)
H25−0.16080.62790.20280.137*
C26−0.0441 (5)0.6831 (4)0.1536 (4)0.129 (3)
H26−0.05920.75450.15570.155*
C270.0434 (3)0.6476 (4)0.1207 (3)0.0869 (13)
H270.08600.69550.09950.104*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.04220 (16)0.04233 (17)0.02635 (14)−0.00182 (10)−0.00222 (10)−0.00305 (10)
S0.0252 (3)0.0199 (3)0.0232 (3)0.00213 (19)0.0043 (2)−0.0001 (2)
O10.0278 (7)0.0209 (7)0.0245 (7)0.0025 (6)0.0041 (6)−0.0012 (6)
O20.0408 (9)0.0339 (9)0.0302 (8)0.0055 (7)0.0016 (7)−0.0113 (7)
O30.0329 (8)0.0324 (8)0.0263 (8)0.0004 (7)0.0024 (6)−0.0055 (7)
O40.0356 (8)0.0263 (8)0.0274 (8)0.0057 (6)0.0041 (6)0.0055 (6)
C10.0247 (10)0.0209 (10)0.0223 (10)0.0000 (8)0.0065 (8)0.0010 (8)
C20.0260 (10)0.0184 (10)0.0251 (10)0.0003 (8)0.0092 (8)0.0006 (8)
C30.0261 (10)0.0200 (10)0.0229 (10)−0.0009 (8)0.0054 (8)0.0027 (8)
C40.0286 (11)0.0225 (11)0.0299 (11)0.0027 (8)0.0083 (9)−0.0001 (9)
C50.0338 (11)0.0195 (10)0.0263 (11)−0.0016 (8)0.0096 (9)−0.0020 (8)
C60.0406 (12)0.0290 (12)0.0265 (11)−0.0005 (10)0.0047 (9)−0.0036 (9)
C70.0279 (10)0.0234 (10)0.0232 (10)−0.0047 (8)0.0044 (8)0.0008 (8)
C80.0258 (10)0.0218 (10)0.0265 (10)0.0007 (8)0.0072 (8)0.0017 (9)
C90.0259 (10)0.0195 (10)0.0244 (10)−0.0005 (8)0.0090 (8)0.0007 (8)
C100.0270 (10)0.0199 (10)0.0238 (10)−0.0021 (8)0.0064 (8)0.0038 (8)
C110.0315 (11)0.0254 (11)0.0311 (11)0.0044 (9)0.0046 (9)−0.0049 (9)
C120.0307 (11)0.0292 (12)0.0333 (12)0.0064 (9)0.0013 (9)−0.0007 (10)
C130.0314 (11)0.0269 (11)0.0228 (10)−0.0042 (9)0.0015 (8)0.0020 (9)
C140.0358 (12)0.0266 (11)0.0273 (11)0.0034 (9)0.0064 (9)−0.0054 (9)
C150.0307 (11)0.0276 (11)0.0282 (11)0.0062 (9)0.0043 (9)0.0006 (9)
C160.0246 (10)0.0245 (10)0.0245 (10)−0.0007 (8)0.0065 (8)−0.0028 (9)
C170.0326 (12)0.0649 (18)0.0269 (12)−0.0063 (12)0.0007 (10)0.0041 (12)
C180.0341 (14)0.095 (3)0.0395 (15)−0.0256 (15)−0.0062 (12)0.0027 (16)
C190.0452 (15)0.070 (2)0.0439 (15)−0.0286 (14)0.0111 (12)0.0008 (15)
C200.0414 (13)0.0430 (15)0.0304 (12)−0.0073 (11)0.0090 (10)0.0042 (11)
C210.0284 (10)0.0296 (11)0.0256 (10)0.0001 (9)0.0022 (9)−0.0010 (9)
C220.0416 (15)0.085 (2)0.0443 (16)0.0091 (15)0.0035 (13)−0.0037 (16)
C230.0460 (16)0.092 (3)0.0480 (17)0.0026 (17)0.0039 (14)−0.0090 (18)
C240.0445 (18)0.177 (5)0.0487 (19)−0.003 (2)0.0070 (15)−0.038 (3)
C250.072 (3)0.176 (6)0.076 (3)0.057 (3)−0.025 (2)−0.081 (4)
C260.148 (5)0.089 (4)0.102 (4)0.060 (4)−0.080 (4)−0.049 (3)
C270.093 (3)0.076 (3)0.067 (2)0.003 (2)−0.036 (2)0.000 (2)

Geometric parameters (Å, °)

Br—C131.901 (2)C12—H120.9300
S—O41.4968 (15)C13—C141.376 (3)
S—C11.774 (2)C14—C151.391 (3)
S—C161.795 (2)C14—H140.9300
O1—C31.371 (2)C15—H150.9300
O1—C21.382 (2)C16—C171.375 (3)
O2—C51.370 (3)C16—C211.393 (3)
O2—C61.429 (3)C17—C181.387 (4)
O3—C71.381 (2)C17—H170.9300
O3—C61.435 (3)C18—C191.389 (4)
C1—C21.370 (3)C18—H180.9300
C1—C91.442 (3)C19—C201.374 (4)
C2—C101.464 (3)C19—H190.9300
C3—C91.391 (3)C20—C211.383 (3)
C3—C41.396 (3)C20—H200.9300
C4—C51.370 (3)C21—H210.9300
C4—H40.9300C22—C231.365 (5)
C5—C71.394 (3)C22—C271.370 (5)
C6—H6A0.9700C22—H220.9300
C6—H6B0.9700C23—C241.354 (4)
C7—C81.371 (3)C23—H230.9300
C8—C91.416 (3)C24—C251.330 (7)
C8—H80.9300C24—H240.9300
C10—C151.395 (3)C25—C261.377 (8)
C10—C111.400 (3)C25—H250.9300
C11—C121.382 (3)C26—C271.445 (8)
C11—H110.9300C26—H260.9300
C12—C131.386 (3)C27—H270.9300
O4—S—C1106.19 (9)C14—C13—C12120.8 (2)
O4—S—C16106.93 (9)C14—C13—Br119.17 (17)
C1—S—C1697.18 (10)C12—C13—Br120.07 (17)
C3—O1—C2107.24 (15)C13—C14—C15120.0 (2)
C5—O2—C6106.02 (17)C13—C14—H14120.0
C7—O3—C6105.75 (16)C15—C14—H14120.0
C2—C1—C9107.91 (17)C14—C15—C10120.5 (2)
C2—C1—S127.83 (16)C14—C15—H15119.8
C9—C1—S124.22 (15)C10—C15—H15119.8
C1—C2—O1109.40 (17)C17—C16—C21121.3 (2)
C1—C2—C10136.67 (19)C17—C16—S120.88 (17)
O1—C2—C10113.92 (17)C21—C16—S117.76 (16)
O1—C3—C9110.75 (17)C16—C17—C18118.7 (2)
O1—C3—C4123.88 (18)C16—C17—H17120.7
C9—C3—C4125.33 (19)C18—C17—H17120.7
C5—C4—C3112.83 (19)C17—C18—C19120.4 (2)
C5—C4—H4123.6C17—C18—H18119.8
C3—C4—H4123.6C19—C18—H18119.8
C4—C5—O2126.47 (19)C20—C19—C18120.3 (2)
C4—C5—C7123.47 (19)C20—C19—H19119.8
O2—C5—C7110.06 (19)C18—C19—H19119.8
O2—C6—O3108.32 (17)C19—C20—C21119.9 (2)
O2—C6—H6A110.0C19—C20—H20120.1
O3—C6—H6A110.0C21—C20—H20120.1
O2—C6—H6B110.0C20—C21—C16119.3 (2)
O3—C6—H6B110.0C20—C21—H21120.3
H6A—C6—H6B108.4C16—C21—H21120.3
C8—C7—O3126.87 (19)C23—C22—C27121.0 (4)
C8—C7—C5123.75 (19)C23—C22—H22119.5
O3—C7—C5109.38 (18)C27—C22—H22119.5
C7—C8—C9114.48 (18)C24—C23—C22121.0 (4)
C7—C8—H8122.8C24—C23—H23119.5
C9—C8—H8122.8C22—C23—H23119.5
C3—C9—C8120.13 (18)C25—C24—C23119.7 (5)
C3—C9—C1104.69 (17)C25—C24—H24120.2
C8—C9—C1135.18 (19)C23—C24—H24120.2
C15—C10—C11118.1 (2)C24—C25—C26123.1 (4)
C15—C10—C2122.52 (19)C24—C25—H25118.4
C11—C10—C2119.36 (18)C26—C25—H25118.4
C12—C11—C10121.5 (2)C25—C26—C27117.2 (4)
C12—C11—H11119.2C25—C26—H26121.4
C10—C11—H11119.2C27—C26—H26121.4
C11—C12—C13119.1 (2)C22—C27—C26118.0 (5)
C11—C12—H12120.5C22—C27—H27121.0
C13—C12—H12120.5C26—C27—H27121.0
O4—S—C1—C2−144.86 (18)S—C1—C9—C3−178.71 (15)
C16—S—C1—C2105.13 (19)C2—C1—C9—C8178.1 (2)
O4—S—C1—C932.39 (19)S—C1—C9—C80.4 (3)
C16—S—C1—C9−77.62 (18)C1—C2—C10—C151.9 (4)
C9—C1—C2—O11.4 (2)O1—C2—C10—C15−179.02 (18)
S—C1—C2—O1179.01 (14)C1—C2—C10—C11−177.7 (2)
C9—C1—C2—C10−179.5 (2)O1—C2—C10—C111.4 (3)
S—C1—C2—C10−1.9 (4)C15—C10—C11—C12−0.4 (3)
C3—O1—C2—C1−1.2 (2)C2—C10—C11—C12179.2 (2)
C3—O1—C2—C10179.43 (16)C10—C11—C12—C130.6 (3)
C2—O1—C3—C90.6 (2)C11—C12—C13—C14−0.3 (3)
C2—O1—C3—C4−177.09 (19)C11—C12—C13—Br−179.72 (17)
O1—C3—C4—C5178.27 (18)C12—C13—C14—C150.0 (3)
C9—C3—C4—C50.9 (3)Br—C13—C14—C15179.35 (17)
C3—C4—C5—O2179.17 (19)C13—C14—C15—C100.2 (3)
C3—C4—C5—C70.2 (3)C11—C10—C15—C140.0 (3)
C6—O2—C5—C4176.6 (2)C2—C10—C15—C14−179.6 (2)
C6—O2—C5—C7−4.3 (2)O4—S—C16—C17−8.5 (2)
C5—O2—C6—O36.8 (2)C1—S—C16—C17100.9 (2)
C7—O3—C6—O2−6.7 (2)O4—S—C16—C21170.16 (16)
C6—O3—C7—C8−175.7 (2)C1—S—C16—C21−80.45 (18)
C6—O3—C7—C54.1 (2)C21—C16—C17—C181.8 (4)
C4—C5—C7—C8−1.0 (3)S—C16—C17—C18−179.6 (2)
O2—C5—C7—C8179.93 (19)C16—C17—C18—C19−0.2 (5)
C4—C5—C7—O3179.20 (19)C17—C18—C19—C20−1.5 (5)
O2—C5—C7—O30.1 (2)C18—C19—C20—C211.5 (5)
O3—C7—C8—C9−179.72 (18)C19—C20—C21—C160.1 (4)
C5—C7—C8—C90.5 (3)C17—C16—C21—C20−1.8 (3)
O1—C3—C9—C8−179.05 (17)S—C16—C21—C20179.57 (18)
C4—C3—C9—C8−1.4 (3)C27—C22—C23—C240.4 (5)
O1—C3—C9—C10.2 (2)C22—C23—C24—C25−1.3 (5)
C4—C3—C9—C1177.88 (19)C23—C24—C25—C261.0 (7)
C7—C8—C9—C30.6 (3)C24—C25—C26—C270.3 (7)
C7—C8—C9—C1−178.4 (2)C23—C22—C27—C260.9 (5)
C2—C1—C9—C3−1.0 (2)C25—C26—C27—C22−1.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.433.290 (3)154
C14—H14···Cg1ii0.932.723.531 (3)147

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2232).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o519–o520.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o849. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J 340, 283–289. [PubMed]
  • Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett 40, 9383–9384.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography