PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2590.
Published online 2009 September 30. doi:  10.1107/S1600536809038860
PMCID: PMC2970417

(RS/SR)-2-Oxo-4-phenyl­azetidin-3-yl acetate

Abstract

In the title compound, C11H11NO3, a modified synthetic acetate derivative, the four memebered β-lactam ring is roughly planar, with a maximum deviation of 0.21 (3) Å, and makes a dihedral angle of 81.46 (14)° with the phenyl ring. In the crystal, a single N—H(...)O hydrogen bond links mol­ecules into a chain parallel to the a axis and thus stabilizes the structure. Although the absolute configuration could not be reliably determined, the compound corresponds to the diasteroisomer (RS/SR)

Related literature

For properties of lactams, see: Selvanayagam et al. (2005 [triangle]); Deschamps et al. (2003 [triangle]); Kanazawa et al. (1993 [triangle]). For a related structure, see: Akkurt et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2590-scheme1.jpg

Experimental

Crystal data

  • C11H11NO3
  • M r = 205.21
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2590-efi3.jpg
  • a = 5.940 (4) Å
  • b = 8.198 (4) Å
  • c = 20.896 (13) Å
  • V = 1017.6 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.21 × 0.16 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.980, T max = 0.990
  • 1899 measured reflections
  • 1126 independent reflections
  • 853 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.125
  • S = 1.17
  • 1126 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038860/dn2490sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038860/dn2490Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful for funding from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization in Universities of Shanxi Province (20070308) and the Start-up Fund of the Northern University of China.

supplementary crystallographic information

Comment

Recently, lactams have attracted much attention because they are convenient intermediates for semi-synthesis of the antitumour drug Taxol and other bioactive analogues (Kanazawa et al., 1993). Furthermore, the lactam ring (azetidin-2-one) is considered a general 'lead structure' for the design of new inhibitors of enzymes containing a serine nucleophile in the active site (Deschamps et al., 2003). In an attempt to form a Zn(II) complex with title compound, we adventitiously formed the title compound (I) and its crystal structure is determined herein.

The molecular structure of (I) is illustrated in Fig. 1. It is very similar to the related 4-(4-Nitrophenyl)-3-phenoxyazetidin-2-one (Akkurt et al., 2007). The geometry of the β-lactam ring is is planar, with a maximum deviation of 0.21 (3)° for atom N1. It makes dihedral angles of 81.46 (14)° with its phenyl substituent. The lactam ting is also comparable with a related reported structure (Selvanayagam et al., 2005). Although the absolute configuration couldn't be reliably determined, the compound correspond to the diasteroisomer (RS/SR).

Intermolecular N-H···O hydrogen bonds form a zig-zag like chain parallel to the a axis and thus stabilize the structure. (Table 1, Figure 2).

Experimental

The title compound was obtained by direct mixing of equimolar (28mg, 0.1mmol) Zn(OAC)2.6H2O of water solution (8mL) and 2-Oxo-4-phenylazetidin-3-yl acetate (21mg, 0.1mmol), and CH3CN and CH3CH2OH solutions (5mL). using slow evaporation of the solvent at room temperature over a period of about two weeks.

Refinement

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

All H atoms were placed in calculated positions (C-H = 0.93 (aromatic), N-H=0.86, or 0.96 Å (methyl)) refined using a riding model, with Uiso(H) = 1.2Ueq(C)(aromatic), Uiso(H) = 1.5Ueq(C) (methyl).

Figures

Fig. 1.
Molecular view of (I) with the atom-labeling scheme. Ellipsoids are drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the formation of the chain parallel to the a axis. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) x-1/2, -y+5/2, -z+2]

Crystal data

C11H11NO3F(000) = 432
Mr = 205.21Dx = 1.340 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1899 reflections
a = 5.940 (4) Åθ = 2.0–25.5°
b = 8.198 (4) ŵ = 0.10 mm1
c = 20.896 (13) ÅT = 298 K
V = 1017.6 (11) Å3Block, colorless
Z = 40.21 × 0.16 × 0.10 mm

Data collection

Bruker APEXII area-detector diffractometer1126 independent reflections
Radiation source: fine-focus sealed tube853 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −7→7
Tmin = 0.980, Tmax = 0.990k = 0→9
1899 measured reflectionsl = −25→0

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.17w = 1/[σ2(Fo2) + (0.0728P)2] where P = (Fo2 + 2Fc2)/3
1126 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6268 (6)0.7783 (4)0.93447 (16)0.0536 (9)
H10.75890.82490.94980.064*
C20.5969 (7)0.6098 (4)0.93779 (16)0.0598 (10)
H20.70930.54430.95510.072*
C30.4038 (7)0.5413 (4)0.91576 (16)0.0613 (10)
H30.38530.42880.91760.074*
C40.2362 (7)0.6368 (4)0.89092 (16)0.0624 (10)
H40.10360.58940.87630.075*
C50.2647 (6)0.8040 (4)0.88758 (14)0.0543 (9)
H50.15020.86880.87100.065*
C60.4617 (5)0.8759 (4)0.90866 (13)0.0412 (7)
C70.4897 (6)1.0577 (3)0.90075 (14)0.0449 (7)
H70.34511.11220.89350.054*
C80.7926 (6)1.1852 (3)0.91243 (13)0.0434 (7)
C90.6733 (5)1.1182 (3)0.85319 (13)0.0418 (7)
H90.61881.20430.82460.050*
C100.7031 (7)0.9236 (4)0.77046 (14)0.0523 (9)
C110.8572 (7)0.7982 (4)0.74195 (15)0.0747 (12)
H11A0.81910.69240.75840.112*
H11B1.01010.82370.75300.112*
H11C0.84090.79840.69620.112*
N10.6232 (5)1.1404 (3)0.95028 (11)0.0480 (7)
H1A0.59961.15500.99050.058*
O10.9694 (4)1.2566 (3)0.92206 (9)0.0555 (6)
O20.8050 (4)0.9987 (2)0.82088 (8)0.0468 (6)
O30.5181 (5)0.9564 (3)0.75310 (12)0.0712 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.048 (2)0.0518 (18)0.0607 (19)0.0040 (16)−0.0083 (17)−0.0020 (16)
C20.067 (3)0.0467 (18)0.065 (2)0.0129 (18)−0.001 (2)0.0082 (16)
C30.072 (3)0.0455 (17)0.066 (2)−0.0057 (19)0.009 (2)−0.0021 (16)
C40.057 (2)0.0561 (19)0.074 (2)−0.0084 (18)−0.003 (2)−0.0076 (17)
C50.050 (2)0.0534 (18)0.0593 (19)0.0017 (17)−0.0051 (17)−0.0001 (15)
C60.0416 (19)0.0429 (14)0.0391 (14)0.0017 (15)0.0034 (14)−0.0025 (12)
C70.0427 (19)0.0433 (15)0.0486 (15)0.0005 (15)0.0000 (15)−0.0026 (12)
C80.049 (2)0.0366 (14)0.0448 (16)0.0036 (15)−0.0017 (16)−0.0025 (12)
C90.0434 (19)0.0418 (13)0.0403 (14)0.0038 (15)−0.0018 (14)−0.0026 (13)
C100.061 (2)0.0573 (18)0.0385 (15)−0.0031 (18)−0.0030 (16)−0.0029 (13)
C110.073 (3)0.083 (2)0.068 (2)0.009 (2)−0.002 (2)−0.030 (2)
N10.0590 (18)0.0466 (13)0.0383 (12)−0.0024 (13)0.0040 (13)−0.0064 (11)
O10.0506 (15)0.0620 (13)0.0540 (12)−0.0106 (12)−0.0019 (11)−0.0112 (10)
O20.0450 (13)0.0540 (11)0.0415 (11)0.0019 (12)−0.0005 (9)−0.0109 (9)
O30.0721 (18)0.0842 (16)0.0572 (12)0.0093 (16)−0.0186 (13)−0.0125 (12)

Geometric parameters (Å, °)

C1—C61.376 (4)C7—H70.9800
C1—C21.395 (4)C8—O11.219 (4)
C1—H10.9300C8—N11.332 (4)
C2—C31.357 (5)C8—C91.529 (4)
C2—H20.9300C9—O21.424 (3)
C3—C41.369 (5)C9—H90.9800
C3—H30.9300C10—O31.188 (4)
C4—C51.383 (4)C10—O21.362 (4)
C4—H40.9300C10—C111.500 (5)
C5—C61.382 (4)C11—H11A0.9600
C5—H50.9300C11—H11B0.9600
C6—C71.509 (4)C11—H11C0.9600
C7—N11.469 (4)N1—H1A0.8600
C7—C91.556 (4)
C6—C1—C2120.3 (4)C9—C7—H7111.8
C6—C1—H1119.8O1—C8—N1133.3 (3)
C2—C1—H1119.8O1—C8—C9134.9 (3)
C3—C2—C1120.0 (4)N1—C8—C991.8 (2)
C3—C2—H2120.0O2—C9—C8112.1 (2)
C1—C2—H2120.0O2—C9—C7117.9 (2)
C2—C3—C4120.4 (3)C8—C9—C785.5 (2)
C2—C3—H3119.8O2—C9—H9112.8
C4—C3—H3119.8C8—C9—H9112.8
C3—C4—C5119.8 (4)C7—C9—H9112.8
C3—C4—H4120.1O3—C10—O2123.0 (3)
C5—C4—H4120.1O3—C10—C11126.7 (3)
C6—C5—C4120.7 (3)O2—C10—C11110.2 (3)
C6—C5—H5119.7C10—C11—H11A109.5
C4—C5—H5119.7C10—C11—H11B109.5
C1—C6—C5118.7 (3)H11A—C11—H11B109.5
C1—C6—C7122.6 (3)C10—C11—H11C109.5
C5—C6—C7118.7 (3)H11A—C11—H11C109.5
N1—C7—C6116.0 (3)H11B—C11—H11C109.5
N1—C7—C985.7 (2)C8—N1—C796.7 (2)
C6—C7—C9117.5 (2)C8—N1—H1A131.6
N1—C7—H7111.8C7—N1—H1A131.6
C6—C7—H7111.8C10—O2—C9115.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.943 (3)162

Symmetry codes: (i) x−1/2, −y+5/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2490).

References

  • Akkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729–o3730.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Deschamps, J. R., McCain, M. & Konaklieva, M. (2003). Acta Cryst. E59, o36–o37.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kanazawa, A. M., Correa, A., Denis, J.-N., Luche, M.-J. & Greene, A. E. (1993). J. Org. Chem.58, 255–257.
  • Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, B. & Ramesh, E. (2005). Acta Cryst. E61, o3386–o3388.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography