PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1229–m1230.
Published online 2009 September 19. doi:  10.1107/S1600536809037167
PMCID: PMC2970401

Bis[μ-2-(aminosulfanyl)pyridine(1−)]bis­[(η5-penta­methyl­cyclo­penta­dien­yl)iridium(III)] diiodide

Abstract

In the title dinuclear iridium(III) complex, [Ir2(C10H15)2(C5H5N2S)2]I2, the iridium(III) atoms are bridged by 2-(aminosulfanyl)pyridine(1−) [(2-py)SNH] ligands in a μ-(2-py)SNH-κ2 N(py),N(NH):κN(NH) mode. The dinuclear complex cation lies on a crystallographic inversion center, resulting in a planar Ir2N2 ring with an Ir—N(py) bond length of 2.085 (9) Å and bridging Ir—N(NH) bonds of 2.110 (9) and 2.113 (9) Å. The two (2-py)S units have mutually anti configurations with respect to the Ir2N2 ring

Related literature

For nitro­gen-atom transfer, see: Du Bois et al. (1997 [triangle]); Birk & Bendix (2003 [triangle]). For photolysis of iridium(III) azido complexes, see: Kotera et al. (2008 [triangle]); Sekioka et al. (2005 [triangle]); Suzuki et al. (2003 [triangle]). For related organic compounds, see: Robinson & Hurley (1965 [triangle]); Brito et al. (2002 [triangle]); Miura et al. (2003 [triangle]). For related coordination compounds, see: Nakayama et al. (1999 [triangle]); Esquivias et al. (2007 [triangle]); Nanthakumar et al. (1999 [triangle]); Ishiwata et al. (2006 [triangle]); Arita et al. (2008 [triangle]). For 2-pyridylmethyl­amido complexes showing the μ-κ2 N(py),N(NH):κN(NH) bridging mode, see: Westerhausen et al. (2002 [triangle]); Wong & Wong(2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1229-scheme1.jpg

Experimental

Crystal data

  • [Ir2(C10H15)2(C5H5N2S)2]I2
  • M r = 1158.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1229-efi1.jpg
  • a = 12.839 (3) Å
  • b = 12.169 (3) Å
  • c = 11.299 (4) Å
  • β = 102.754 (19)°
  • V = 1721.8 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 9.66 mm−1
  • T = 296 K
  • 0.20 × 0.10 × 0.08 mm

Data collection

  • Rigaku AFC7R diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.248, T max = 0.512
  • 5294 measured reflections
  • 5006 independent reflections
  • 3621 reflections with I > 2σ(I)
  • R int = 0.080
  • 3 standard reflections every 150 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.212
  • S = 1.02
  • 5006 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 3.47 e Å−3
  • Δρmin = −3.49 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999 [triangle]); cell refinement: WinAFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond angles (°)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037167/zs2007sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037167/zs2007Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (No. 20550064) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

supplementary crystallographic information

Comment

Nitrogen-atom transfer is one of the promising synthetic methodologies for nitrogen-containing organic/inorganic compounds (Du Bois et al., 1997; Birk & Bendix, 2003). To this end we are trying to prepare high-valent iridium nitrido (or nitrenido) complexes and are investigating their reactivities at the N atom site (Suzuki et al., 2003; Sekioka et al., 2005; Kotera et al., 2008). In our previous paper (Sekioka et al., 2005) it was reported that photolysis of an acetonitrile solution of [Cp*Ir(2-Spy)(N3)] (2-Spy = 2-pyridinethiolate) resulted in insertion of an N atom derived from the azido ligand into the Ir–N(py) bond to afford [Cp*Ir(1-N-2-Spy)]. The reaction solution containing this complex was mixed with P(OMe)3 and MeI in this order and several yellow crystals of compound (I) were deposited from the mixture, although the yield was very low (ca 2%). The single-crystal X-ray analysis revealed that (I) is an iodide salt of a dinuclear iridium(III) complex bridged by 2-pyridylthioamide(1–), [(Cp*Ir)2{µ-(2-py)SNH}2]I2, as shown in Fig. 1. The H atom of the bridging amide ligand (–NH) could not be located in the difference Fourier map. However, the observation of a ν(NH) band at 3073 cm-1 in the IR spectrum and the good agreement of elemental analysis with the calculated values for the diiodide salt, it is suggested that the bridging N atom is protonated to form the amide(1-) ligand. The mechanism for formation of (2-py)SNH- is unknown at present but it could be a by-product of photolysis of the [Cp*Ir(2-Spy)(N3)] complex, or a N atom (or a NH-group) transfer product from the reaction of the [Cp*Ir(1-N-2-Spy)] complex with P(OMe)3 and MeI.

In compound (I), the N–S and S–C bond lengths of the bridging 2-pyridylthioamido(1–) ligand are 1.747 (9) and 1.73 (1) Å, respectively. 2-Pyridylthioamine [alternatively, 2-pyridinesulfenamide: (2-py)SNH2] was prepared by oxidation of 2-pyridinethiolate by chloramine, and its cobalt(II) and iron(II) complexes as well as their Schiff base derivatives {(2-py)SN=CR1R2} were also synthesized more than 40 years ago (Robinson & Hurley, 1965). However, none of the compounds containing (2-py)SNH2 have been so far characterized by X-ray analysis. The only example of the X-ray structural determination of a 2-pyridinesulfenamide is the N-piperidine derivative, (5-NO2-2-py)SNC5H10 (Brito et al., 2002) in which the N–S and S–C bond lengths are 1.699 and 1.761 Å, respectively. The crystal structures of the related aminyl radicals, (2-py)SN(C6H2Ph2R), have also been reported (Miura et al., 2003) in which the N–S and S–C bond lengths are 1.599 (4)–1.626 (8) and 1.770 (6)–1.781 (10) Å, respectively. Thus, in (I) the N–S bond is relatively longer, while the S–C bond is slightly shorter than those in similar organic compounds.

In the related transition-metal complex containing the 2-pyridylthioamide(1–) derivative, a cobalt(III) complex with tridentate (2-pyS)2N- ligands, [Co{(2-pyS)2N}2]ClO4, has been structurally determined (Nakayama et al., 1999). In this complex the N–S and S–C bond lengths are 1.711 (3)–1.718 (3) and 1.742 (4)–1.747 (4) Å, respectively. Furthermore, a few crystal structures of metal complexes with 2-pyridinesulfonamide {(2-py)SO2NH2} derivatives have been reported (Esquivias et al., 2007; Nanthakumar et al., 1999), but compound (I) is the first example containing coordinated (2-py)SNH- ligand has been characterized by X-ray methods. The Ir–N(py) bond length in compound (I) is 2.085 (9) Å, and the bridging Ir–N(NH) bond lengths are 2.110 (9) and 2.113 (9) Å. As seen in Fig. 1, the (2-py)SNH- ligand adopts a µ-κ2N(py),N(NH):κN(NH) bridging mode. This coordination mode is rare, to our knowledge having precedent in only two 2-pyridylmethylamido (2-pyCHRNH-) complexes (Westerhausen et al., 2002; Wong et al., 2002). For the dinuclear iridium(III) complexes bridged by two amide-N donors, Ishikawa, Arita and coworkers reported the sulfonamido-bridged complexes (Ishiwata et al. 2006; Arita et al., 2008). In their p-MeC6H3SO2NH-bridged dinuclear complex, [(Cp*Ir)2(µ-MeC6H3SO2NH)2], the two Cp* ligands are in mutually syn orientations with respect to the Ir2N2 ring, but in (I) the two Cp* ligands adopt an anti configuration .

Experimental

A solution of [Cp*Ir(N3)(2-Spy)] (59 mg, 0.12 mmol) in dry acetonitrile (2 cm3) was prepared under a nitrogen atmosphere and photolyzed for 15 h with a high pressure Hg lamp (Riko UVL-100HA) at a temperature below 0 °C, controlled by a Yamato Neocool model BD12. To the resulting dark red solution was added P(OMe)3 (35 µL, 0.30 mmol), the color of the mixture immediately turning to yellowish brown. After allowing the solution to stand at ambient temperature for 18 h, methyl iodide (18.5 µL, 0.30 mmol) was added, and then the mixture was allowed to stand overnight. Several yellow crystals of [(Cp*Ir)2(2-pySNH)2]I2 (I) were deposited from the mixture. Yield: 1.5 mg (2.1%). Anal. Found: C, 31.17; H, 3.54; N, 5.08%. Calcd for C30H40I2Ir2N4S2: C, 31.09; H, 3.48; N, 4.83%. IR (Nujol): ν(NH) = 3073 cm-1.

Refinement

The H atoms were located geometrically and constrained to ride on their parent atoms with N–H = 0.91 Å and C–H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(N or C). The largest peak and deepest hole in the difference Fourier map (3.47 and -3.49 eÅ-3) are located 0.82 and 0.82 Å respectively, from atom Ir1.

Figures

Fig. 1.
An ORTEP-3 (Farrugia, 1997) view of the cationic part of the compound (I), showing the atom numbering scheme. H atoms are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. The asterisk (*) corresponds to symmetry code ...

Crystal data

[Ir2(C10H15)2(C5H5N2S)2]I2F(000) = 1080
Mr = 1158.98Dx = 2.235 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.839 (3) Åθ = 15.1–17.0°
b = 12.169 (3) ŵ = 9.66 mm1
c = 11.299 (4) ÅT = 296 K
β = 102.754 (19)°Plate, yellow
V = 1721.8 (8) Å30.20 × 0.10 × 0.08 mm
Z = 2

Data collection

Rigaku AFC7R diffractometer3621 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.080
graphiteθmax = 30.0°, θmin = 2.7°
ω–2θ scansh = −17→18
Absorption correction: ψ scan (North et al., 1968)k = 0→17
Tmin = 0.248, Tmax = 0.512l = −15→6
5294 measured reflections3 standard reflections every 150 reflections
5006 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.1625P)2] where P = (Fo2 + 2Fc2)/3
5006 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 3.47 e Å3
0 restraintsΔρmin = −3.49 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ir10.44162 (3)0.04859 (3)0.10915 (3)0.03051 (16)
I10.43226 (8)−0.33173 (7)0.19002 (9)0.0577 (3)
S10.6607 (2)0.1519 (2)0.0834 (3)0.0444 (6)
N10.5900 (6)−0.0006 (7)0.2111 (8)0.0347 (17)
N20.5455 (7)0.0923 (7)−0.0044 (8)0.0360 (17)
C20.6748 (8)0.0563 (8)0.1992 (11)0.037 (2)
C30.7773 (9)0.0412 (11)0.2784 (13)0.053 (3)
C40.7850 (9)−0.0313 (12)0.3700 (13)0.054 (3)
C50.7009 (11)−0.0948 (10)0.3812 (11)0.049 (3)
C60.6016 (10)−0.0797 (10)0.3026 (10)0.046 (2)
H20.51190.1449−0.05630.043*
H30.83670.08010.26700.064*
H40.8493−0.03790.42670.064*
H50.7093−0.14840.44120.059*
H60.5435−0.12220.31100.055*
C110.3852 (11)0.2107 (12)0.1475 (14)0.058 (3)
C120.4010 (9)0.1434 (11)0.2566 (11)0.046 (3)
C130.3359 (9)0.0464 (9)0.2330 (12)0.044 (3)
C140.2687 (12)0.0600 (12)0.1115 (14)0.061 (4)
C150.3039 (13)0.1527 (13)0.0590 (12)0.062 (4)
C160.4361 (18)0.3130 (13)0.133 (2)0.103 (9)
C170.4780 (12)0.1724 (16)0.3763 (15)0.082 (6)
C180.3265 (16)−0.0390 (11)0.3278 (17)0.067 (4)
C190.1763 (11)−0.016 (2)0.059 (2)0.092 (7)
C200.2544 (17)0.2022 (18)−0.0683 (16)0.102 (8)
H16A0.41040.33930.05130.123*
H16B0.51190.30240.14740.123*
H16C0.41990.36580.18900.123*
H17A0.51240.24110.36770.098*
H17B0.53090.11570.39700.098*
H17C0.43900.17870.43940.098*
H18A0.2779−0.09560.29120.080*
H18B0.3002−0.00480.39200.080*
H18C0.3954−0.07050.36020.080*
H19A0.1715−0.07270.11770.111*
H19B0.1881−0.0498−0.01350.111*
H19C0.11100.02470.04130.111*
H20A0.29430.2659−0.08160.122*
H20B0.18150.2226−0.07180.122*
H20C0.25680.1484−0.12980.122*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ir10.0272 (2)0.0357 (2)0.0303 (2)0.00425 (13)0.00992 (14)0.00336 (13)
I10.0620 (5)0.0496 (5)0.0624 (6)−0.0088 (4)0.0159 (4)0.0109 (4)
S10.0439 (14)0.0407 (13)0.0502 (15)−0.0105 (11)0.0143 (11)−0.0015 (11)
N10.031 (4)0.033 (4)0.043 (5)0.005 (3)0.015 (3)−0.003 (3)
N20.036 (4)0.032 (4)0.040 (4)0.007 (3)0.008 (3)0.006 (3)
C20.030 (5)0.035 (5)0.049 (6)−0.001 (3)0.012 (4)0.000 (4)
C30.025 (5)0.074 (9)0.059 (8)−0.002 (5)0.007 (5)−0.023 (6)
C40.027 (5)0.076 (9)0.051 (7)0.002 (5)−0.007 (5)−0.010 (6)
C50.058 (7)0.044 (6)0.040 (6)0.006 (5)0.000 (5)0.001 (5)
C60.054 (7)0.046 (6)0.039 (5)0.012 (5)0.014 (5)0.004 (5)
C110.051 (7)0.059 (8)0.067 (8)0.016 (6)0.024 (6)0.012 (6)
C120.034 (5)0.056 (6)0.053 (6)0.004 (5)0.020 (5)−0.012 (5)
C130.032 (5)0.048 (6)0.052 (7)0.002 (4)0.011 (5)−0.011 (5)
C140.047 (7)0.081 (10)0.055 (8)0.009 (6)0.007 (6)−0.018 (7)
C150.068 (9)0.081 (10)0.045 (7)0.015 (7)0.028 (6)−0.008 (7)
C160.14 (2)0.045 (8)0.16 (2)0.032 (10)0.095 (18)0.038 (10)
C170.048 (8)0.128 (16)0.066 (9)−0.007 (8)0.007 (7)−0.059 (10)
C180.086 (12)0.045 (7)0.083 (11)−0.004 (7)0.052 (10)0.012 (7)
C190.030 (6)0.138 (17)0.112 (16)−0.018 (9)0.021 (8)−0.055 (14)
C200.104 (15)0.132 (17)0.070 (11)0.086 (14)0.022 (10)0.045 (11)

Geometric parameters (Å, °)

Ir1—N12.085 (9)C14—C151.40 (2)
Ir1—N22.113 (9)C14—C191.52 (2)
Ir1—N2i2.110 (9)C15—C201.56 (2)
Ir1—C112.177 (14)N2—H20.9100
Ir1—C122.182 (11)C3—H30.9300
Ir1—C132.154 (13)C4—H40.9300
Ir1—C142.231 (15)C5—H50.9300
Ir1—C152.147 (15)C6—H60.9300
S1—C21.730 (11)C16—H16A0.9600
S1—N21.747 (9)C16—H16B0.9600
N1—C21.322 (13)C16—H16C0.9600
N1—C61.396 (15)C17—H17A0.9600
C2—C31.431 (16)C17—H17B0.9600
C3—C41.35 (2)C17—H17C0.9600
C4—C51.357 (19)C18—H18A0.9600
C5—C61.395 (17)C18—H18B0.9600
C11—C121.457 (19)C18—H18C0.9600
C11—C151.46 (2)C19—H19A0.9600
C11—C161.43 (2)C19—H19B0.9600
C12—C131.437 (16)C19—H19C0.9600
C12—C171.531 (18)C20—H20A0.9600
C13—C141.46 (2)C20—H20B0.9600
C13—C181.515 (18)C20—H20C0.9600
N1—Ir1—N2i84.3 (3)C12—C13—Ir171.7 (7)
N1—Ir1—N277.6 (3)C14—C13—Ir173.4 (8)
N2i—Ir1—N274.1 (4)C18—C13—Ir1128.9 (9)
N1—Ir1—C11117.0 (5)C12—C13—C14106.3 (12)
N2—Ir1—C11100.1 (4)C12—C13—C18124.4 (13)
N2i—Ir1—C11156.7 (5)C14—C13—C18128.2 (13)
N1—Ir1—C1294.2 (4)C13—C14—Ir167.7 (7)
N2—Ir1—C12128.3 (4)C15—C14—Ir168.2 (9)
N2i—Ir1—C12156.8 (4)C19—C14—Ir1130.6 (10)
N1—Ir1—C13105.5 (4)C13—C14—C15108.2 (13)
N2—Ir1—C13166.1 (4)C13—C14—C19122.9 (16)
N2i—Ir1—C13119.5 (4)C15—C14—C19129.0 (17)
N1—Ir1—C14143.3 (5)C11—C15—Ir171.4 (8)
N2—Ir1—C14139.0 (5)C14—C15—Ir174.7 (9)
N2i—Ir1—C14105.0 (4)C20—C15—Ir1128.0 (9)
N1—Ir1—C15156.1 (5)C11—C15—C14110.5 (13)
N2—Ir1—C15106.5 (4)C11—C15—C20122.0 (17)
N2i—Ir1—C15119.6 (5)C14—C15—C20126.8 (17)
C11—Ir1—C1239.1 (5)C2—C3—H3121.1
C11—Ir1—C1366.2 (5)C4—C3—H3121.1
C11—Ir1—C1464.3 (5)C3—C4—H4119.3
C11—Ir1—C1539.4 (6)C5—C4—H4119.3
C12—Ir1—C1338.7 (4)C4—C5—H5120.0
C12—Ir1—C1463.4 (5)C6—C5—H5120.0
C12—Ir1—C1564.4 (5)C5—C6—H6120.1
C13—Ir1—C1438.9 (5)N1—C6—H6120.1
C13—Ir1—C1565.1 (5)C11—C16—H16A109.5
C14—Ir1—C1537.1 (6)C11—C16—H16B109.5
C2—S1—N294.9 (5)C11—C16—H16C109.5
C2—N1—C6118.7 (10)H16A—C16—H16B109.5
C2—N1—Ir1117.8 (7)H16A—C16—H16C109.5
C6—N1—Ir1122.8 (7)H16B—C16—H16C109.5
Ir1i—N2—Ir1105.9 (4)C12—C17—H17A109.5
S1—N2—Ir1109.2 (4)C12—C17—H17B109.5
S1—N2—Ir1i119.6 (4)C12—C17—H17C109.5
S1—N2—H2107.2H17A—C17—H17B109.5
Ir1i—N2—H2107.2H17A—C17—H17C109.5
Ir1—N2—H2107.2H17B—C17—H17C109.5
N1—C2—S1118.6 (8)C13—C18—H18A109.5
C3—C2—S1119.2 (9)C13—C18—H18B109.5
N1—C2—C3122.2 (11)C13—C18—H18C109.5
C2—C3—C4117.8 (11)H18A—C18—H18B109.5
C3—C4—C5121.4 (11)H18A—C18—H18C109.5
C4—C5—C6119.9 (12)H18B—C18—H18C109.5
C5—C6—N1119.7 (12)C14—C19—H19A109.5
C12—C11—Ir170.7 (7)C14—C19—H19B109.5
C15—C11—Ir169.2 (8)C14—C19—H19C109.5
C16—C11—Ir1125.7 (11)H19A—C19—H19B109.5
C12—C11—C15104.6 (13)H19A—C19—H19C109.5
C12—C11—C16127.3 (16)H19B—C19—H19C109.5
C15—C11—C16128.0 (17)C15—C20—H20A109.5
C11—C12—Ir170.3 (7)C15—C20—H20B109.5
C13—C12—Ir169.6 (7)C15—C20—H20C109.5
C17—C12—Ir1125.5 (8)H20A—C20—H20B109.5
C11—C12—C13109.8 (12)H20A—C20—H20C109.5
C11—C12—C17124.1 (14)H20B—C20—H20C109.5
C13—C12—C17126.2 (14)
N2i—Ir1—N1—C2106.2 (8)C11—C12—C13—C14−6.9 (13)
N2—Ir1—N1—C231.3 (8)C17—C12—C13—C14174.6 (12)
C15—Ir1—N1—C2−71.6 (14)Ir1—C12—C13—C14−65.8 (8)
C13—Ir1—N1—C2−134.7 (8)C11—C12—C13—C18−176.0 (12)
C11—Ir1—N1—C2−63.8 (9)C17—C12—C13—C185.4 (19)
C12—Ir1—N1—C2−97.1 (8)Ir1—C12—C13—C18125.1 (12)
C14—Ir1—N1—C2−146.2 (9)C11—C12—C13—Ir158.9 (8)
N2i—Ir1—N1—C6−83.1 (9)C17—C12—C13—Ir1−119.7 (12)
N2—Ir1—N1—C6−158.0 (9)N1—Ir1—C13—C1277.0 (7)
C15—Ir1—N1—C699.1 (14)N2i—Ir1—C13—C12169.3 (6)
C13—Ir1—N1—C636.0 (9)N2—Ir1—C13—C12−24 (2)
C11—Ir1—N1—C6106.9 (9)C15—Ir1—C13—C12−79.5 (8)
C12—Ir1—N1—C673.6 (9)C11—Ir1—C13—C12−36.1 (8)
C14—Ir1—N1—C624.5 (12)C14—Ir1—C13—C12−114.0 (11)
C2—S1—N2—Ir1i−78.5 (6)N1—Ir1—C13—C14−169.0 (7)
C2—S1—N2—Ir143.6 (5)N2i—Ir1—C13—C14−76.8 (8)
N1—Ir1—N2—S1−42.5 (4)N2—Ir1—C13—C1489.8 (17)
N2i—Ir1—N2—S1−130.0 (6)C15—Ir1—C13—C1434.5 (8)
C15—Ir1—N2—S1113.2 (6)C11—Ir1—C13—C1477.9 (9)
C13—Ir1—N2—S162.1 (17)C12—Ir1—C13—C14114.0 (11)
C11—Ir1—N2—S173.2 (6)N1—Ir1—C13—C18−42.9 (14)
C12—Ir1—N2—S143.1 (7)N2i—Ir1—C13—C1849.4 (15)
C14—Ir1—N2—S1135.3 (6)N2—Ir1—C13—C18−144.1 (15)
N1—Ir1—N2—Ir1i87.6 (4)C15—Ir1—C13—C18160.6 (15)
N2i—Ir1—N2—Ir1i0.0C11—Ir1—C13—C18−156.0 (15)
C15—Ir1—N2—Ir1i−116.8 (5)C12—Ir1—C13—C18−119.9 (16)
C13—Ir1—N2—Ir1i−167.8 (15)C14—Ir1—C13—C18126.1 (16)
C11—Ir1—N2—Ir1i−156.8 (5)C12—C13—C14—C158.5 (14)
C12—Ir1—N2—Ir1i173.1 (4)C18—C13—C14—C15177.1 (13)
C14—Ir1—N2—Ir1i−94.7 (7)Ir1—C13—C14—C15−56.1 (10)
C6—N1—C2—C3−1.4 (16)C12—C13—C14—C19−170.4 (13)
Ir1—N1—C2—C3169.7 (8)C18—C13—C14—C19−2(2)
C6—N1—C2—S1178.4 (8)Ir1—C13—C14—C19125.0 (13)
Ir1—N1—C2—S1−10.5 (11)C12—C13—C14—Ir164.7 (8)
N2—S1—C2—N1−21.7 (9)C18—C13—C14—Ir1−126.8 (13)
N2—S1—C2—C3158.2 (9)N1—Ir1—C14—C15139.6 (8)
N1—C2—C3—C4−2.2 (18)N2i—Ir1—C14—C15−119.5 (8)
S1—C2—C3—C4177.9 (9)N2—Ir1—C14—C15−36.7 (11)
C2—C3—C4—C55(2)C13—Ir1—C14—C15121.8 (11)
C3—C4—C5—C6−5(2)C11—Ir1—C14—C1538.3 (8)
C4—C5—C6—N11.3 (19)C12—Ir1—C14—C1582.1 (9)
C2—N1—C6—C51.9 (16)N1—Ir1—C14—C1317.9 (11)
Ir1—N1—C6—C5−168.7 (8)N2i—Ir1—C14—C13118.7 (7)
N1—Ir1—C11—C1662.4 (18)N2—Ir1—C14—C13−158.4 (6)
N2i—Ir1—C11—C16−92 (2)C15—Ir1—C14—C13−121.8 (11)
N2—Ir1—C11—C16−18.7 (18)C11—Ir1—C14—C13−83.4 (8)
C15—Ir1—C11—C16−123 (2)C12—Ir1—C14—C13−39.7 (7)
C13—Ir1—C11—C16158.4 (18)N1—Ir1—C14—C19−97.1 (19)
C12—Ir1—C11—C16123 (2)N2i—Ir1—C14—C193.8 (19)
C14—Ir1—C11—C16−158.7 (19)N2—Ir1—C14—C1986.6 (19)
N1—Ir1—C11—C12−60.2 (8)C15—Ir1—C14—C19123 (2)
N2i—Ir1—C11—C12145.6 (9)C13—Ir1—C14—C19−115 (2)
N2—Ir1—C11—C12−141.3 (7)C11—Ir1—C14—C19162 (2)
C15—Ir1—C11—C12114.8 (11)C12—Ir1—C14—C19−155 (2)
C13—Ir1—C11—C1235.8 (7)C13—C14—C15—C11−7.1 (15)
C14—Ir1—C11—C1278.7 (8)C19—C14—C15—C11171.7 (14)
N1—Ir1—C11—C15−175.0 (7)Ir1—C14—C15—C11−63.0 (10)
N2i—Ir1—C11—C1530.7 (15)C13—C14—C15—C20−177.7 (13)
N2—Ir1—C11—C15103.8 (8)C19—C14—C15—C201(2)
C13—Ir1—C11—C15−79.1 (9)Ir1—C14—C15—C20126.4 (14)
C12—Ir1—C11—C15−114.8 (11)C13—C14—C15—Ir155.9 (9)
C14—Ir1—C11—C15−36.1 (8)C19—C14—C15—Ir1−125.3 (15)
C16—C11—C12—C13−179.2 (14)C16—C11—C15—C14−175.3 (15)
C15—C11—C12—C132.7 (13)C12—C11—C15—C142.8 (15)
Ir1—C11—C12—C13−58.5 (8)Ir1—C11—C15—C1465.0 (10)
C16—C11—C12—C17−1(2)C16—C11—C15—C20−4(2)
C15—C11—C12—C17−178.7 (11)C12—C11—C15—C20174.0 (12)
Ir1—C11—C12—C17120.1 (11)Ir1—C11—C15—C20−123.8 (13)
C16—C11—C12—Ir1−120.7 (15)C16—C11—C15—Ir1119.7 (16)
C15—C11—C12—Ir161.2 (9)C12—C11—C15—Ir1−62.2 (8)
N1—Ir1—C12—C13−109.7 (7)N1—Ir1—C15—C14−107.4 (13)
N2i—Ir1—C12—C13−24.3 (14)N2i—Ir1—C15—C1475.1 (9)
N2—Ir1—C12—C13172.8 (6)N2—Ir1—C15—C14155.9 (8)
C15—Ir1—C12—C1381.4 (8)C13—Ir1—C15—C14−36.0 (8)
C11—Ir1—C12—C13121.1 (11)C11—Ir1—C15—C14−118.3 (12)
C14—Ir1—C12—C1339.9 (8)C12—Ir1—C15—C14−79.0 (9)
N1—Ir1—C12—C11129.2 (8)N1—Ir1—C15—C1110.9 (16)
N2i—Ir1—C12—C11−145.4 (10)N2i—Ir1—C15—C11−166.5 (7)
N2—Ir1—C12—C1151.7 (9)N2—Ir1—C15—C11−85.8 (8)
C15—Ir1—C12—C11−39.7 (9)C13—Ir1—C15—C1182.3 (8)
C13—Ir1—C12—C11−121.1 (11)C12—Ir1—C15—C1139.3 (8)
C14—Ir1—C12—C11−81.2 (9)C14—Ir1—C15—C11118.3 (12)
N1—Ir1—C12—C1710.8 (14)N1—Ir1—C15—C20127.5 (16)
N2i—Ir1—C12—C1796.2 (15)N2i—Ir1—C15—C20−50.0 (19)
N2—Ir1—C12—C17−66.7 (15)N2—Ir1—C15—C2030.8 (19)
C15—Ir1—C12—C17−158.1 (15)C13—Ir1—C15—C20−161 (2)
C13—Ir1—C12—C17120.5 (16)C11—Ir1—C15—C20117 (2)
C11—Ir1—C12—C17−118.4 (16)C12—Ir1—C15—C20156 (2)
C14—Ir1—C12—C17160.4 (15)C14—Ir1—C15—C20−125 (2)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···I1i0.912.913.64 (1)139

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2007).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Arita, H., Ishiwata, K., Kuwata, S. & Ikariya, T. (2008). Organometallics27, 493–496.
  • Birk, T. & Bendix, J. (2003). Inorg. Chem.42, 7608–7615. [PubMed]
  • Brito, I., Leon, Y., Arias, M., Vargas, D., Carmona, F., Ramirez, E., Restovic, A. & Cardenas, A. (2002). Bol. Soc. Chil. Quim.47, 159–162.
  • Du Bois, J., Tomooka, C. S., Hong, J. & Carreira, E. M. (1997). Acc. Chem. Res.30, 364–372.
  • Esquivias, J., Arrayas, R. G. & Carretero, J. C. (2007). Angew. Chem. Int. Ed.46, 9257–9260. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ishiwata, K., Kuwata, S. & Ikariya, T. (2006). Organometallics25, 5847–5849.
  • Kotera, M., Sekioka, Y. & Suzuki, T. (2008). Inorg. Chim. Acta361, 1479–1484.
  • Miura, Y., Oyama, Y. & Teki, Y. (2003). J. Org. Chem.68, 1225–1234. [PubMed]
  • Nakayama, H., Prout, K., Hill, H. A. O. & Datta, D. (1999). Chem. Commun. pp. 695–696.
  • Nanthakumar, A., Miura, J., Diltz, S. & Leo, C.-K. (1999). Inorg. Chem.38, 3010–3013. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Rigaku (1999). WinAFC Diffractometer Control Software Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
  • Robinson, M. A. & Hurley, T. J. (1965). Inorg. Chem.4, 1716–1721.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sekioka, Y., Kaizaki, S., Mayer, J. M. & Suzuki, T. (2005). Inorg. Chem.44, 8173–8175. [PubMed]
  • Suzuki, T., DiPasquale, A. G. & Mayer, J. M. (2003). J. Am. Chem. Soc.125, 10514–10515. [PubMed]
  • Westerhausen, M., Bollwein, T., Mayer, P., Piotrowski, H. & Pfitzner, A. (2002). Z. Anorg. Allg. Chem.628, 1425–1432.
  • Wong, J. S.-Y. & Wong, W.-T. (2002). New J. Chem.26, 94–104.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography