PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2441.
Published online 2009 September 12. doi:  10.1107/S1600536809033121
PMCID: PMC2970398

2-(1,3-Benzothia­zol-2-ylsulfan­yl)-1-phenyl­ethanone

Abstract

In the mol­ecule of the title compound, C15H11NOS2, the 1,3-benzothia­zole ring is oriented at a dihedral angle of 6.61 (6)° with respect to the phenyl ring. In the crystal structure, inter­molecular C—H(...)O inter­actions link the mol­ecules in a herring-bone arrangement along the b axis and π–π contacts between the thia­zole and phenyl rings [centroid–centroid distance = 3.851 (1) Å] may further stabilize the structure.

Related literature

For applications of the title compound in organic synthesis, see: Marco et al. (1995 [triangle]); Fuju et al. (1988 [triangle]); Ni et al. (2006 [triangle]); Grossert et al. (1984 [triangle]); Oishi et al. (1988 [triangle]); Antane et al. (2004 [triangle]). For its biological activity, see: Padmavathi et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2441-scheme1.jpg

Experimental

Crystal data

  • C15H11NOS2
  • M r = 285.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2441-efi1.jpg
  • a = 5.1060 (1) Å
  • b = 14.6220 (3) Å
  • c = 17.3920 (4) Å
  • V = 1298.49 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 295 K
  • 0.45 × 0.32 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.841, T max = 0.935
  • 14309 measured reflections
  • 3734 independent reflections
  • 3576 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.068
  • S = 1.07
  • 3734 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1550 Friedel pairs
  • Flack parameter: 0.01 (5)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2004 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033121/hk2756sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033121/hk2756Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Isfahan and the University of Malaya for supporting this work.

supplementary crystallographic information

Comment

2-(Benzo[d]thiaazol-2-ylthio)-1-phenylethanone is of great importance in organic synthesis and β-keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Marco et al., 1995; Fuju et al., 1988; Ni et al., 2006). In addition, β-keto-sulfones can be converted into optically active β-hydroxy-sulfones, halomethyl and dihalomethyl sulfones. Halomethyl and dihalomethyl sulfones are very good α-carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides and β-hydroxy-sulfones. Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Grossert et al., 1984; Oishi et al., 1988; Antane et al., 2004). They also possess other biological properties such as herbicidal, bactericidal antifungal and insecticidal. Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi et al., 2008). We prepared the title compound as a precursor for the synthesis of gem-difluoromethylene-containing heterocycle, and reported herein its crystal structure.

In the molecule of the title compound, (Fig. 1), the benzothiazole ring is oriented with respect to the phenyl ring at a dihedral angle of 6.61 (6)°. In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules in herringbone mode along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the thiazole and phenyl rings, Cg1—Cg2i, [symmetry code: (i) x - 1, y, z, where Cg1 and Cg2 are centroids of the rings (S1/N1/C1/C6/C7) and (C1-C6), respectively] may further stabilize the structure, with centroid-centroid distance of 3.851 (1) Å.

Experimental

For the preparation of the title compound, sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzothiazole (3 mmol) in ethanol (15 ml) and water (15 ml) and stirred at room temperature for 30 min. α-Bromoacetophenone (3 mmol) was added to the reaction mixture and stirring was continued for 1h. The reaction was monitored by TLC and after 60 min showed the complete disappearance of the starting material. The reaction mixture was poured into HCl (1M, 100 ml) containing crushed ice (50 g). The product was filtered under vacuum and filtrate washed with ice-cold ethanol (10 ml) and water (10 ml). Recrystalization from petrol ether and filtration gave the title compound (m.p. 387-389 K). 1H NMR (400 MHz; CDCl3): 8.15-7.75 (m, 4H), 7.55-7.32 (m, 5H), 5.10 (s, 2H). 13C NMR (126 MHz; CDCl3): 194.2 (C═O), 162.1, 151.8, 135.3, 134.2, 131.1, 126.7, 126.5, 124.7, 124.1, 119.8, 119.6, 37.5. Anal. Calcd. for CHNS: C, 63.13; H, 3.89; N, 4.91. Found: C, 63.07; H, 3.86; N, 4.93.

Refinement

H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level
Fig. 2.
A partial packing diagram. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H11NOS2Dx = 1.460 Mg m3
Mr = 285.37Melting point: 388 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8370 reflections
a = 5.1060 (1) Åθ = 2.3–30.5°
b = 14.6220 (3) ŵ = 0.40 mm1
c = 17.3920 (4) ÅT = 295 K
V = 1298.49 (5) Å3Block, pale-yellow
Z = 40.45 × 0.32 × 0.17 mm
F(000) = 592

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3734 independent reflections
Radiation source: fine-focus sealed tube3576 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −7→6
Tmin = 0.841, Tmax = 0.935k = −20→20
14309 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068w = 1/[σ2(Fo2) + (0.0411P)2 + 0.1348P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3734 reflectionsΔρmax = 0.31 e Å3
172 parametersΔρmin = −0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 1550 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.32503 (6)0.26829 (2)0.744608 (17)0.02052 (8)
S20.01546 (7)0.10723 (2)0.799872 (17)0.02062 (8)
O1−0.3471 (2)−0.02751 (8)0.84299 (6)0.0341 (3)
N10.3955 (2)0.19530 (7)0.87979 (6)0.0178 (2)
C10.5575 (2)0.31781 (8)0.80443 (7)0.0173 (2)
C20.7199 (3)0.39273 (9)0.79124 (8)0.0226 (3)
H2A0.71120.42520.74530.027*
C30.8936 (3)0.41738 (9)0.84818 (8)0.0240 (3)
H3A1.00560.46660.84020.029*
C40.9045 (3)0.36954 (9)0.91801 (8)0.0223 (3)
H4A1.02300.38760.95570.027*
C50.7413 (3)0.29592 (9)0.93148 (7)0.0188 (2)
H5A0.74770.26480.97810.023*
C60.5668 (2)0.26908 (9)0.87415 (6)0.0159 (2)
C70.2610 (3)0.18779 (9)0.81703 (7)0.0171 (2)
C80.0085 (3)0.05695 (9)0.89446 (7)0.0219 (2)
H8A0.17520.02790.90530.026*
H8B−0.02070.10410.93270.026*
C9−0.2085 (3)−0.01289 (9)0.89821 (8)0.0208 (3)
C10−0.2437 (3)−0.06360 (9)0.97210 (8)0.0197 (2)
C11−0.4423 (3)−0.12874 (9)0.97723 (9)0.0255 (3)
H11A−0.5527−0.13880.93550.031*
C12−0.4758 (3)−0.17854 (10)1.04421 (9)0.0296 (3)
H12A−0.6096−0.22151.04760.036*
C13−0.3103 (3)−0.16447 (9)1.10627 (9)0.0271 (3)
H13A−0.3309−0.19911.15070.032*
C14−0.1145 (3)−0.09906 (10)1.10233 (8)0.0271 (3)
H14A−0.0055−0.08911.14430.032*
C15−0.0816 (3)−0.04858 (10)1.03552 (8)0.0240 (3)
H15A0.0493−0.00441.03290.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02236 (15)0.02516 (15)0.01403 (13)−0.00182 (12)−0.00251 (11)0.00181 (11)
S20.02335 (15)0.02168 (14)0.01685 (13)−0.00322 (13)−0.00214 (12)−0.00344 (11)
O10.0360 (6)0.0339 (5)0.0323 (5)−0.0120 (5)−0.0132 (5)0.0001 (4)
N10.0199 (5)0.0188 (5)0.0148 (5)−0.0008 (4)0.0011 (4)−0.0018 (4)
C10.0166 (5)0.0199 (5)0.0154 (5)0.0016 (4)−0.0003 (4)−0.0011 (4)
C20.0233 (6)0.0220 (6)0.0224 (6)0.0001 (5)0.0012 (5)0.0051 (5)
C30.0223 (6)0.0193 (6)0.0303 (7)−0.0026 (5)−0.0002 (5)0.0022 (5)
C40.0202 (6)0.0231 (6)0.0237 (6)0.0003 (5)−0.0041 (5)−0.0042 (5)
C50.0207 (6)0.0197 (6)0.0160 (5)0.0021 (5)−0.0016 (4)−0.0006 (4)
C60.0168 (5)0.0164 (5)0.0144 (5)0.0018 (5)0.0012 (4)−0.0015 (4)
C70.0188 (6)0.0175 (5)0.0150 (5)0.0002 (4)0.0019 (4)−0.0021 (4)
C80.0226 (6)0.0233 (6)0.0199 (5)−0.0065 (6)−0.0036 (5)0.0005 (5)
C90.0197 (6)0.0173 (6)0.0253 (6)−0.0004 (5)−0.0011 (5)−0.0033 (5)
C100.0172 (6)0.0155 (5)0.0265 (6)0.0010 (4)0.0018 (5)−0.0026 (5)
C110.0211 (7)0.0221 (6)0.0333 (7)−0.0042 (5)−0.0012 (5)−0.0039 (5)
C120.0255 (7)0.0225 (6)0.0409 (8)−0.0054 (6)0.0072 (6)−0.0009 (6)
C130.0282 (7)0.0229 (6)0.0301 (7)0.0020 (6)0.0098 (6)0.0020 (5)
C140.0280 (7)0.0280 (7)0.0253 (6)−0.0025 (6)−0.0006 (5)0.0005 (6)
C150.0206 (6)0.0228 (6)0.0285 (6)−0.0051 (5)−0.0006 (5)0.0006 (5)

Geometric parameters (Å, °)

S1—C11.7365 (13)C5—H5A0.9300
S1—C71.7548 (13)C8—C91.5080 (18)
S2—C71.7459 (13)C8—H8A0.9700
S2—C81.8022 (13)C8—H8B0.9700
O1—C91.2122 (16)C9—C101.4945 (19)
N1—C71.2944 (16)C10—C111.3943 (18)
N1—C61.3923 (17)C10—C151.3964 (19)
C1—C21.3929 (18)C11—C121.384 (2)
C1—C61.4073 (17)C11—H11A0.9300
C2—C31.3774 (19)C12—C131.386 (2)
C2—H2A0.9300C12—H12A0.9300
C3—C41.4026 (19)C13—C141.385 (2)
C3—H3A0.9300C13—H13A0.9300
C4—C51.3813 (19)C14—C151.387 (2)
C4—H4A0.9300C14—H14A0.9300
C5—C61.3934 (17)C15—H15A0.9300
C1—S1—C788.68 (6)S2—C8—H8A109.8
C7—S2—C897.66 (6)C9—C8—H8B109.8
C7—N1—C6109.87 (11)S2—C8—H8B109.8
C2—C1—C6121.32 (12)H8A—C8—H8B108.3
C2—C1—S1129.51 (10)O1—C9—C10121.56 (13)
C6—C1—S1109.17 (9)O1—C9—C8120.95 (12)
C3—C2—C1118.08 (12)C10—C9—C8117.49 (11)
C3—C2—H2A121.0C11—C10—C15119.22 (13)
C1—C2—H2A121.0C11—C10—C9118.78 (12)
C2—C3—C4121.17 (13)C15—C10—C9121.99 (12)
C2—C3—H3A119.4C12—C11—C10120.20 (14)
C4—C3—H3A119.4C12—C11—H11A119.9
C5—C4—C3120.77 (12)C10—C11—H11A119.9
C5—C4—H4A119.6C11—C12—C13120.13 (13)
C3—C4—H4A119.6C11—C12—H12A119.9
C4—C5—C6118.93 (12)C13—C12—H12A119.9
C4—C5—H5A120.5C14—C13—C12120.25 (13)
C6—C5—H5A120.5C14—C13—H13A119.9
N1—C6—C5124.71 (11)C12—C13—H13A119.9
N1—C6—C1115.57 (10)C13—C14—C15119.76 (14)
C5—C6—C1119.71 (12)C13—C14—H14A120.1
N1—C7—S2125.63 (10)C15—C14—H14A120.1
N1—C7—S1116.71 (10)C14—C15—C10120.42 (13)
S2—C7—S1117.63 (7)C14—C15—H15A119.8
C9—C8—S2109.28 (9)C10—C15—H15A119.8
C9—C8—H8A109.8
C7—S1—C1—C2179.53 (13)C8—S2—C7—S1−172.57 (8)
C7—S1—C1—C60.04 (9)C1—S1—C7—N10.00 (11)
C6—C1—C2—C30.86 (19)C1—S1—C7—S2177.93 (8)
S1—C1—C2—C3−178.59 (11)C7—S2—C8—C9175.74 (9)
C1—C2—C3—C4−1.0 (2)S2—C8—C9—O1−0.42 (16)
C2—C3—C4—C50.2 (2)S2—C8—C9—C10179.05 (10)
C3—C4—C5—C60.7 (2)O1—C9—C10—C11−0.4 (2)
C7—N1—C6—C5−179.59 (12)C8—C9—C10—C11−179.87 (12)
C7—N1—C6—C10.07 (15)O1—C9—C10—C15178.67 (13)
C4—C5—C6—N1178.80 (12)C8—C9—C10—C15−0.79 (18)
C4—C5—C6—C1−0.84 (19)C15—C10—C11—C12−0.7 (2)
C2—C1—C6—N1−179.62 (11)C9—C10—C11—C12178.35 (13)
S1—C1—C6—N1−0.07 (13)C10—C11—C12—C13−0.6 (2)
C2—C1—C6—C50.06 (19)C11—C12—C13—C141.5 (2)
S1—C1—C6—C5179.61 (10)C12—C13—C14—C15−1.0 (2)
C6—N1—C7—S2−177.78 (9)C13—C14—C15—C10−0.3 (2)
C6—N1—C7—S1−0.04 (14)C11—C10—C15—C141.2 (2)
C8—S2—C7—N15.15 (13)C9—C10—C15—C14−177.84 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.513.2299 (17)135

Symmetry codes: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2756).

References

  • Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun.34, 2443–2449.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J. Appl. Cryst.37, 258–264.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500.
  • Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem.62, 798–807.
  • Marco, J. L., Fernandez, N., Khira, I., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem.60, 6678–6679.
  • Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem.71, 6829–6833. [PubMed]
  • Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent JP63 243 067, 212359.
  • Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem.43, 917–924. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography