PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2435.
Published online 2009 September 12. doi:  10.1107/S1600536809035405
PMCID: PMC2970397

4-(2-Chloro­ethyl)morpholinium picrate

Abstract

The title compound, C6H13ClNO+·C6H2N3O7 , was synthesized from picric acid and 4-(2-chloro­ethyl)morpholine. The crystal structure is stabilized by C—H(...)O and N—H(...)O hydrogen-bond inter­actions.

Related literature

For the homeopathic uses of the metal derivatives of picric acid, see: Maurya et al. (1999 [triangle]). For the medical applications of ammonium picrate, see: Boericke (1982 [triangle]) and of morpholine derivatives, see: Lutz et al. (1947 [triangle]); Hazard et al. (1948 [triangle]); Raymond et al. (1999 [triangle]). For a related structure, see: Briggs et al. (2004 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2435-scheme1.jpg

Experimental

Crystal data

  • C6H13ClNO+·C6H2N3O7
  • M r = 378.72
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2435-efi1.jpg
  • a = 8.2063 (4) Å
  • b = 9.3075 (5) Å
  • c = 10.2896 (6) Å
  • α = 93.954 (5)°
  • β = 95.284 (5)°
  • γ = 90.376 (4)°
  • V = 780.65 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 293 K
  • 0.30 × 0.24 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: none
  • 8478 measured reflections
  • 4960 independent reflections
  • 3665 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.179
  • S = 1.12
  • 4960 reflections
  • 286 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.85 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows(Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035405/jh2096sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035405/jh2096Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Science and Technology of the Government of India for funding under SR/S2/CMP-47/2003 research project.

supplementary crystallographic information

Comment

The metal derivatives of picric acid are also known as medicines in homeopathy (Maurya et al., 1999). Silver picrate is a good antimicrobial agent. Zinc picrate is used in Bright's disease, headache, exhaustion, facial paralysis, nymphomania, paralysis, seminal emissions, spiral weakness, loss of memory and energy.

Ammonium picrate is a remedy for malarial fever and neuralgia, whooping cough, pain in the occiput and mastoid regions (Boericke, 1982).

N-substituted morpholines were used as anti-malarials (Lutz et al., 1947) and 4-methyl-4-(2-phenylethyl)-morpholinium iodide have shown marked hypertension in dogs at a dose of 5 mg./kg (Hazard et al., 1948). Morpholine derivatives are also used as agricultural fungicides in cereals and are known as ergosterol biosynthesis inhibitors (Raymond et al., 1999).

A search of the Cambridge Structural Database (Version 5.26; Allen, 2002) reveals that there are 90 known structures that contain the morpholinium cation. Of these there are 24 that have an N-ethyl chain, or longer, including the structure of 4-(2-fluoroethyl) morpholinium chloride (Briggs et al., 2004).

The title compound, [C6 H13Cl N O]+ [C6 H2N3 O7]-, was synthesized from picric acid and 4-(2-chloroethyl)morpholine.All geometrical parameters are in their usual ranges. The crystal structure is stabilized by C—H···O and N—H···O hydrogen interactions.

Experimental

Picric acid (2.29 g, 0.01 mol) was dissolved in water. 4-(2-chloroethyl) morpholine (1.49 g 0.01 mol) was dissolved in 25 ml of ethanol. The two solutions were mixed and 5 ml of 5 M HCl was added to this mixture and stirred for few minutes,filtered, dried and yellow crystals of 4-(2-Chloroethyl)morpholinium picrate were obtained by slow evaporation in ethanol. (m.p. 394 K). Analytical data: Found (Cald): C %: 36.89(37.96); H%: 4.22 (4.25); N%:14.67(14.75).

Refinement

All hydrogen atoms were located from the difference Fourier map and refined isotropically with distance restraints 0.830–0.982 Å.

Figures

Fig. 1.
View of (I) (50% probability displacement ellipsoids).
Fig. 2.
Depiction of C—H···O and N—H···O interactions in the title compound(I)

Crystal data

C6H13ClNO+·C6H2N3O7Z = 2
Mr = 378.72F(000) = 392
Triclinic, P1Dx = 1.611 Mg m3
a = 8.2063 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3075 (5) ÅCell parameters from 3665 reflections
c = 10.2896 (6) Åθ = 3.3–32.3°
α = 93.954 (5)°µ = 0.30 mm1
β = 95.284 (5)°T = 293 K
γ = 90.376 (4)°Rectangular, yellow
V = 780.65 (7) Å30.30 × 0.24 × 0.18 mm

Data collection

Oxford Diffraction Xcalibur diffractometerRint = 0.016
ω–2θ scansθmax = 32.3°, θmin = 3.3°
8478 measured reflectionsh = −12→12
4960 independent reflectionsk = −8→13
3665 reflections with I > 2σ(I)l = −14→15

Refinement

Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179w = 1/[σ2(Fo2) + (0.0877P)2 + 0.2886P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
4960 reflectionsΔρmax = 0.85 e Å3
286 parametersΔρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
H8B−0.178 (3)−0.150 (3)0.786 (2)0.035 (6)*
H9B−0.286 (3)0.146 (3)0.883 (3)0.041 (6)*
H40.386 (3)0.587 (2)0.610 (2)0.033 (6)*
H9A−0.401 (3)0.024 (3)0.793 (2)0.036 (6)*
H10A−0.331 (3)0.311 (3)0.731 (2)0.039 (6)*
H20.299 (3)0.541 (3)0.972 (3)0.042 (7)*
H11A−0.135 (3)−0.023 (3)0.548 (2)0.040 (6)*
H12A−0.241 (3)0.215 (3)0.532 (3)0.049 (7)*
H8A−0.102 (3)−0.044 (2)0.887 (3)0.033 (6)*
H11B−0.300 (3)−0.076 (3)0.597 (2)0.037 (6)*
H7B0.087 (4)−0.208 (3)0.791 (3)0.058 (8)*
H12B−0.355 (4)0.101 (3)0.435 (3)0.055 (8)*
H7A0.069 (3)−0.121 (3)0.678 (3)0.052 (7)*
H10B−0.504 (4)0.259 (3)0.757 (3)0.052 (7)*
H4'−0.106 (3)0.125 (3)0.743 (2)0.037 (6)*
Cl0.22010 (6)0.00390 (7)0.83918 (7)0.0572 (2)
N4−0.18045 (17)0.05189 (15)0.73274 (15)0.0277 (3)
C8−0.1068 (2)−0.0703 (2)0.8042 (2)0.0333 (4)
C9−0.3282 (2)0.1067 (2)0.7962 (2)0.0343 (4)
O8−0.4535 (2)0.1794 (2)0.58892 (18)0.0535 (4)
C11−0.2318 (2)0.0085 (2)0.5915 (2)0.0365 (4)
C10−0.4054 (3)0.2269 (2)0.7217 (3)0.0469 (5)
C70.0592 (2)−0.1150 (2)0.7678 (2)0.0405 (4)
C12−0.3138 (3)0.1338 (3)0.5261 (2)0.0465 (5)
C50.2198 (2)0.43814 (18)0.62764 (19)0.0308 (3)
N20.47503 (19)0.70058 (17)0.84556 (19)0.0374 (4)
C20.2800 (2)0.51646 (19)0.8933 (2)0.0325 (4)
O10.0317 (2)0.25764 (19)0.67334 (16)0.0543 (5)
C40.3325 (2)0.54510 (18)0.6696 (2)0.0318 (4)
C30.3613 (2)0.58362 (18)0.80201 (19)0.0310 (4)
C10.1667 (2)0.40844 (18)0.85050 (19)0.0311 (4)
C60.1275 (2)0.35914 (19)0.71437 (19)0.0330 (4)
N30.0845 (2)0.34768 (17)0.95407 (18)0.0384 (4)
N10.1924 (2)0.40692 (18)0.48624 (17)0.0389 (4)
O50.5335 (2)0.76658 (17)0.76105 (19)0.0541 (4)
O2−0.0347 (2)0.2682 (2)0.92512 (19)0.0603 (5)
O40.5057 (2)0.73018 (19)0.96342 (19)0.0542 (4)
O30.1342 (2)0.3801 (2)1.06775 (18)0.0568 (5)
O70.0693 (3)0.3444 (3)0.4397 (2)0.0808 (7)
O60.2896 (3)0.4530 (3)0.4174 (2)0.0902 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0304 (2)0.0661 (4)0.0743 (5)−0.0029 (2)0.0023 (2)0.0011 (3)
N40.0240 (6)0.0286 (6)0.0314 (7)−0.0047 (5)0.0033 (5)0.0069 (5)
C80.0287 (8)0.0346 (9)0.0378 (10)−0.0009 (7)0.0032 (7)0.0116 (7)
C90.0269 (8)0.0356 (9)0.0411 (10)−0.0010 (6)0.0065 (7)0.0041 (7)
O80.0401 (8)0.0624 (10)0.0567 (11)0.0076 (7)−0.0100 (7)0.0140 (8)
C110.0333 (9)0.0426 (10)0.0330 (9)−0.0036 (7)0.0009 (7)0.0027 (7)
C100.0431 (11)0.0402 (10)0.0573 (14)0.0088 (9)0.0011 (10)0.0067 (9)
C70.0340 (9)0.0425 (10)0.0449 (12)0.0056 (8)0.0033 (8)0.0012 (9)
C120.0446 (11)0.0585 (13)0.0362 (11)−0.0044 (10)−0.0058 (9)0.0152 (9)
C50.0287 (7)0.0271 (7)0.0367 (9)−0.0030 (6)0.0012 (6)0.0057 (6)
N20.0289 (7)0.0288 (7)0.0537 (11)−0.0048 (6)0.0011 (7)0.0009 (7)
C20.0306 (8)0.0285 (8)0.0382 (10)−0.0009 (6)0.0009 (7)0.0042 (7)
O10.0577 (10)0.0596 (10)0.0445 (9)−0.0371 (8)−0.0041 (7)0.0103 (7)
C40.0265 (7)0.0258 (7)0.0442 (10)−0.0024 (6)0.0056 (7)0.0089 (7)
C30.0261 (7)0.0242 (7)0.0425 (10)−0.0044 (6)0.0011 (7)0.0036 (7)
C10.0293 (8)0.0284 (7)0.0366 (9)−0.0038 (6)0.0041 (7)0.0083 (7)
C60.0282 (8)0.0305 (8)0.0409 (10)−0.0069 (6)0.0002 (7)0.0103 (7)
N30.0397 (8)0.0313 (7)0.0467 (10)−0.0014 (6)0.0122 (7)0.0101 (7)
N10.0435 (9)0.0361 (8)0.0369 (9)−0.0018 (7)0.0037 (7)0.0020 (7)
O50.0504 (9)0.0417 (8)0.0711 (12)−0.0223 (7)0.0093 (8)0.0074 (8)
O20.0626 (11)0.0575 (10)0.0627 (11)−0.0316 (8)0.0238 (9)−0.0016 (8)
O40.0494 (9)0.0505 (9)0.0590 (11)−0.0126 (7)−0.0051 (8)−0.0080 (8)
O30.0639 (11)0.0647 (11)0.0439 (9)−0.0126 (9)0.0067 (8)0.0163 (8)
O70.0923 (16)0.1001 (17)0.0461 (11)−0.0532 (14)−0.0013 (10)−0.0075 (10)
O60.0833 (15)0.142 (2)0.0462 (11)−0.0453 (16)0.0161 (10)0.0066 (13)

Geometric parameters (Å, °)

Cl—C71.788 (2)C12—H12A0.96 (3)
N4—C81.497 (2)C12—H12B0.99 (3)
N4—C111.503 (2)C5—C41.374 (2)
N4—C91.504 (2)C5—C61.455 (2)
N4—H4'0.91 (2)C5—N11.460 (3)
C8—C71.500 (3)N2—O41.228 (3)
C8—H8B0.94 (2)N2—O51.229 (2)
C8—H8A0.87 (3)N2—C31.449 (2)
C9—C101.510 (3)C2—C31.382 (3)
C9—H9B0.98 (3)C2—C11.386 (2)
C9—H9A0.97 (2)C2—H20.83 (3)
O8—C121.420 (3)O1—C61.250 (2)
O8—C101.426 (3)C4—C31.383 (3)
C11—C121.517 (3)C4—H40.89 (2)
C11—H11A0.98 (3)C1—C61.450 (3)
C11—H11B0.97 (2)C1—N31.456 (2)
C10—H10A0.98 (3)N3—O31.220 (2)
C10—H10B0.96 (3)N3—O21.225 (2)
C7—H7B0.93 (3)N1—O71.206 (3)
C7—H7A0.94 (3)N1—O61.210 (3)
C8—N4—C11112.20 (15)Cl—C7—H7A105.7 (17)
C8—N4—C9110.07 (14)H7B—C7—H7A103 (3)
C11—N4—C9108.38 (14)O8—C12—C11111.16 (18)
C8—N4—H4'106.9 (15)O8—C12—H12A106.5 (17)
C11—N4—H4'113.0 (15)C11—C12—H12A110.6 (16)
C9—N4—H4'106.1 (15)O8—C12—H12B106.1 (17)
N4—C8—C7115.12 (16)C11—C12—H12B108.8 (16)
N4—C8—H8B107.4 (14)H12A—C12—H12B113 (2)
C7—C8—H8B108.0 (14)C4—C5—C6124.17 (18)
N4—C8—H8A106.8 (16)C4—C5—N1116.02 (16)
C7—C8—H8A110.2 (15)C6—C5—N1119.80 (15)
H8B—C8—H8A109 (2)O4—N2—O5123.60 (17)
N4—C9—C10110.06 (17)O4—N2—C3118.95 (17)
N4—C9—H9B105.2 (15)O5—N2—C3117.44 (18)
C10—C9—H9B108.9 (15)C3—C2—C1118.96 (18)
N4—C9—H9A105.1 (14)C3—C2—H2120.0 (18)
C10—C9—H9A111.6 (14)C1—C2—H2121.0 (18)
H9B—C9—H9A116 (2)C5—C4—C3119.30 (16)
C12—O8—C10109.70 (17)C5—C4—H4118.7 (15)
N4—C11—C12109.86 (17)C3—C4—H4122.0 (15)
N4—C11—H11A109.0 (14)C2—C3—C4121.53 (16)
C12—C11—H11A111.4 (14)C2—C3—N2119.26 (17)
N4—C11—H11B102.7 (14)C4—C3—N2119.18 (16)
C12—C11—H11B116.2 (14)C2—C1—C6124.15 (16)
H11A—C11—H11B107 (2)C2—C1—N3114.57 (17)
O8—C10—C9111.16 (18)C6—C1—N3121.27 (15)
O8—C10—H10A113.2 (15)O1—C6—C1125.59 (17)
C9—C10—H10A109.7 (14)O1—C6—C5122.46 (18)
O8—C10—H10B105.5 (17)C1—C6—C5111.90 (15)
C9—C10—H10B111.4 (17)O3—N3—O2121.69 (18)
H10A—C10—H10B106 (2)O3—N3—C1118.95 (17)
C8—C7—Cl113.24 (15)O2—N3—C1119.35 (18)
C8—C7—H7B113.2 (19)O7—N1—O6121.2 (2)
Cl—C7—H7B107.2 (18)O7—N1—C5119.83 (18)
C8—C7—H7A114.0 (18)O6—N1—C5118.78 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4'···O10.91 (3)1.89 (3)2.718 (2)151.2 (19)
N4—H4'···O20.91 (3)2.25 (2)2.896 (2)127.6 (17)
C2—H2···O30.83 (3)2.34 (3)2.637 (3)102 (2)
C2—H2···O40.83 (2)2.45 (2)2.723 (3)101 (2)
C4—H4···O60.90 (3)2.34 (3)2.667 (3)101.7 (15)
C7—H7A···O7i0.93 (3)2.54 (3)3.026 (3)113 (2)
C8—H8B···O5ii0.94 (3)2.47 (2)3.290 (2)146 (2)
C9—H9A···O5ii0.97 (3)2.45 (3)3.341 (2)154 (2)
C9—H9B···O20.97 (3)2.34 (3)2.985 (3)123 (2)
C12—H12A···O10.96 (3)2.57 (2)3.254 (3)129 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2096).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Boericke, W. (1982). Homeopathic Materia Medica, 9th ed., pp. 46, 148, 228,369, 516 and 687. Calcutta: Roy Publishing House.
  • Briggs, C. R. S., Allen, M. J., O’Hagan, D., Tozer, D. J., Slawin, A. M. Z., Goeta, A. E. & Howard, J. A. K. (2004). Org. Biomol. Chem.2, 732–740. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hazard, R., Corteggiani, E. & Renard, S. H. (1948). Compt. Rend.95, 227.
  • Lutz, R. E., Rufus, K. A., Gilbert, A., Philip, S. B., Marion, T. C., John, F. C., Adolf, J. D., James, A. F., Robert, H. J., Norman, H. L., Tellis, A. M., Kent, C. N., Russel, J. R. Jr, Newton, H. S. Jr, Smith, J. D. & James, W. W. (1947). J. Org. Chem.12, 617–703.
  • Maurya, R. C. & Sharma, P. (1999). Indian J. Chem. Sect. A, 38, 509–513.
  • Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Raymond, G. M. & Dimitrios, A. D. (1999). Biocontrol Sci. Technol.9, 53–65.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography