PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2391.
Published online 2009 September 9. doi:  10.1107/S1600536809035338
PMCID: PMC2970393

1,3-Bis(2-ethoxy­phen­yl)triazene methanol 0.33-solvate

Abstract

There are three independent mol­ecules of 1,3-bis­(2-ethoxy­phen­yl)triazene and a mol­ecule of methanol in the asymmetric unit of the title compound, C16H19N3O2·0.33CH3OH. Two mol­ecules related by a non-crystallographic pseudo-twofold rotation axis are linked via distinct inter­molecular N—H(...)N hydrogen bonds, leading to the formation of a dimer with an R 2 2(8) graph set. The third mol­ecule is connected to the methanol mol­ecule by O—H(...)N and N—H(...)O hydrogen bonds. There are a number of weak C—H(...)π inter­actions, with H(...)π distances ranging from 2.74 to 2.89 Å between the C—H groups and the aromatic benzene rings.

Related literature

For related structures, see: Rofouei et al. (2009 [triangle]); Melardi et al.(2008 [triangle]); Rofouei et al. (2006 [triangle]). For the structural properties and metal complexes of aryl triazenes, see: Meldola et al. (1888 [triangle]); Leman et al. (1993 [triangle]); Chen et al. (2002 [triangle]); Vrieze et al. (1987 [triangle]); Hematyar et al. (2008 [triangle]); Payehghadr et al. (2007 [triangle]). For hydrogen-bond patterns and graph sets, see: Grell et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2391-scheme1.jpg

Experimental

Crystal data

  • C16H19N3O2·0.33CH4O
  • M r = 296.02
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2391-efi1.jpg
  • a = 12.146 (3) Å
  • b = 13.640 (3) Å
  • c = 16.117 (4) Å
  • α = 71.448 (5)°
  • β = 72.827 (4)°
  • γ = 81.151 (4)°
  • V = 2413.2 (10) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 120 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.978, T max = 0.992
  • 21014 measured reflections
  • 9421 independent reflections
  • 4997 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.204
  • S = 1.00
  • 9421 reflections
  • 587 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035338/pv2190sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035338/pv2190Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Aryl triazenes have been studied over 130 years for their interesting structural, anticancer, and reactivity properties. The first extensive investigation of the coordination chemistry of a triazene derivative (1,3-diphenyltriazene) was carried out in 1887 by Meldola (Meldola et al., 1888). In the intervening years, numerous transition metal triazenide compounds have been studied (Liman, et al., 1993). Triazene compounds characterized by having a diazoamino group commonly adopt a trans configuration in the ground state (Chen et al., 2002). The study of transition metal complexes containing 1,3-diaryltriazenide [RN═N—NR] ligands has increased greatly in the past few years, because of their potential reactivity in relation to their several coordination modes (Vrieze, et al., 1987). We have recently reported the synthesis and characterization of three 1,3-bis derivatives of triazene (Melardi et al., 2008; Rofouei et al., 2006; Rofouei et al., 2009).

The title structure contains three molecules of C16H19N3O2 and a molecule of CH3OH in an asymmetric unit (Fig. 1). It is similar to our recently published article, C16H19N3O2, [Rofouei, et al., 2009] and only differs in one methanol molecule as solvent. All the three molecules A, B and C show trans stereo chemistry for the N═N double bond. The torsion angles C1—N1—N2—N3, C17—N4—N5—N6 and C33—N7—N8—N9 are -177.34 (17), 179.42 (16) and 177.30 (16)°, respectively. The N1—N2, N2—N3, N4—N5, N5—N6, N7—N8 and N8—N9 bond distances are 1.291 (2), 1.308 (3), 1.298 (2), 1.304 (3), 1.276 (3) and 1.328 (2) Å, respectively which are in good agreement with the reported data for N—N and N═N bond distances (Hematyar, et al., 2008; Payehghadr, et al., 2007; Melardi, et al., 2008).

The molecule A is almost planar, but the other two molecules (B and C) are somewhat twisted with respect to the phenyl rings. Two interlocked molecules (A and B) are connected by two distinct classic N—H···N hydrogen bonds with D···A of 3.024 (3) and 3.033 (3) Å and are related by a non-crystallographic pseudo twofold rotation axis. The N—H···N hydrogen bonds lead to the formation of a dimer with an R22(8) graph set geometry (Grell, et al., 2002). The steric demand of the ethoxy groups in the ortho position prevents a co-planar arrangement of the two molecules in the dimer which instead consists of two interlocked molecules. The third molecule (C) is connected to a methanol molecule by two O7—H7O···N7 and N9—H9N···O7 hydrogen bonds forming a six membered ring with an R22(6) graph set geometry (Grell, et al., 2002). Hydrogen bond geometries are shown in Table 1.

Also, there are several interesting weak C—H···π interactions between CH groups with aromatic phenyl rings with H···π distances ranging from 2.74 Å to 2.89 Å (Fig. 2). The unit cell packing of the title compound is presented in Fig. 3.

Experimental

A 100 ml flask was charged with 10 g of ice and 15 ml of water and then cooled to 273 K in an ice-bath. To this was added 10 mmol (1.37 g) of o–phenetidin and 13 mmol of hydrochloric acid (37%) followed by a solution containing NaNO2 6 mmol (0.41 g) in 25 ml of water during a 15 min period. After mixing for 15 min a solution containing 180 mmol (14.76 g) of sodium acetate in 45 ml of water was added. After mixing for 45 min the brown product was filtered and dissolved in Et2O, and was crystallized at 263 K. Recrystallization from methanol afforded the title compound as an orange crystalline material.

Refinement

The hydrogen atoms bonded to N and O were found from difference Fourier synthesis. All hydrogen atoms were included in the refinement at geometrically idealized positions in isotropic approximation in riding mode with distances: N/O–H = 0.88 Å, C–H = 0.95 (aryl), 0.98 (methyl), 0.99 (methylene) Å and Uiso(H) equal to 1.5Ueq(C) for methyl groups and 1.2Ueq(N/O and methylene C).

Figures

Fig. 1.
Molecular structure of the title compound, with thermal elliposids drawn at 50% probability level. Only hydrogen atoms involved in the hydrogen bonding are shown.
Fig. 2.
Weak C—H···π interactions between C–H groups with aromatic phenyl rings with with H···π distances ranging from 2.74 Å to 2.89 Å.
Fig. 3.
Unit cell packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H19N3O2·0.33CH4OZ = 6
Mr = 296.02F(000) = 948
Triclinic, P1Dx = 1.222 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.146 (3) ÅCell parameters from 2921 reflections
b = 13.640 (3) Åθ = 2.4–24.6°
c = 16.117 (4) ŵ = 0.08 mm1
α = 71.448 (5)°T = 120 K
β = 72.827 (4)°Prism, orange
γ = 81.151 (4)°0.30 × 0.20 × 0.10 mm
V = 2413.2 (10) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer9421 independent reflections
Radiation source: fine-focus sealed tube4997 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −14→14
Tmin = 0.978, Tmax = 0.992k = −16→16
21014 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: difference Fourier map
wR(F2) = 0.204H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.07P)2 + 2P] where P = (Fo2 + 2Fc2)/3
9421 reflections(Δ/σ)max < 0.001
587 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.31967 (13)0.24889 (12)0.40953 (10)0.0360 (4)
O20.00977 (12)0.23580 (12)0.82111 (10)0.0334 (4)
N10.12742 (15)0.19444 (14)0.53596 (12)0.0312 (5)
N20.03282 (15)0.16622 (14)0.59722 (12)0.0289 (5)
N30.02050 (15)0.19607 (14)0.66913 (12)0.0314 (5)
H3N0.07250.23230.67220.038*
C10.14480 (18)0.16900 (16)0.45427 (14)0.0272 (5)
C20.24629 (18)0.20179 (16)0.38631 (15)0.0296 (6)
C30.26635 (19)0.18578 (17)0.30162 (15)0.0322 (6)
H3A0.33350.20990.25490.039*
C40.18748 (19)0.13438 (17)0.28613 (15)0.0344 (6)
H4A0.20170.12240.22880.041*
C50.08808 (19)0.10025 (18)0.35339 (15)0.0342 (6)
H5A0.03490.06460.34250.041*
C60.06734 (18)0.11877 (17)0.43658 (15)0.0303 (6)
H6A−0.00130.09660.48230.036*
C70.41398 (19)0.29920 (19)0.33826 (16)0.0372 (6)
H7A0.38450.35250.29030.045*
H7B0.46600.24800.31070.045*
C80.4776 (2)0.3482 (2)0.37950 (18)0.0545 (8)
H8A0.54270.38330.33250.082*
H8B0.50650.29470.42670.082*
H8C0.42530.39880.40640.082*
C9−0.07846 (17)0.16844 (16)0.74147 (14)0.0265 (5)
C10−0.08259 (18)0.18916 (16)0.82198 (14)0.0277 (5)
C11−0.17676 (19)0.15921 (17)0.89794 (15)0.0322 (6)
H11A−0.17970.17190.95320.039*
C12−0.26562 (18)0.11094 (17)0.89177 (15)0.0330 (6)
H12A−0.32960.09090.94300.040*
C13−0.26151 (18)0.09184 (17)0.81164 (15)0.0322 (6)
H13A−0.32260.05880.80800.039*
C14−0.16852 (18)0.12082 (17)0.73660 (15)0.0308 (6)
H14A−0.16640.10800.68150.037*
C150.0103 (2)0.25548 (18)0.90324 (15)0.0354 (6)
H15A0.00890.18950.95240.043*
H15B−0.05860.30040.92230.043*
C160.1185 (2)0.3083 (2)0.88496 (17)0.0480 (7)
H16A0.12100.32270.94020.072*
H16B0.11890.37350.83640.072*
H16C0.18610.26310.86640.072*
O3−0.03481 (12)0.44284 (12)0.63303 (11)0.0377 (4)
O40.33503 (12)0.04227 (11)0.62005 (11)0.0346 (4)
N40.17838 (15)0.36547 (13)0.63042 (12)0.0297 (5)
N50.28253 (15)0.32739 (13)0.63278 (12)0.0286 (5)
N60.30570 (15)0.23841 (13)0.61518 (12)0.0306 (5)
H6N0.25310.20950.60470.037*
C170.14665 (18)0.46114 (16)0.64961 (14)0.0282 (5)
C180.03205 (18)0.50163 (17)0.65099 (15)0.0309 (6)
C19−0.0048 (2)0.59563 (18)0.66942 (16)0.0387 (7)
H19A−0.08150.62370.66970.046*
C200.0692 (2)0.64865 (18)0.68742 (18)0.0435 (7)
H20A0.04260.71240.70110.052*
C210.1819 (2)0.60992 (18)0.68580 (17)0.0424 (7)
H21A0.23240.64700.69800.051*
C220.2204 (2)0.51652 (17)0.66619 (15)0.0334 (6)
H22A0.29800.49030.66410.040*
C23−0.13987 (19)0.4905 (2)0.60961 (16)0.0402 (7)
H23A−0.12350.55310.55690.048*
H23B−0.19460.51130.66130.048*
C24−0.1903 (2)0.4117 (2)0.58680 (17)0.0464 (7)
H24A−0.26240.44140.57040.070*
H24B−0.20610.35030.63950.070*
H24C−0.13540.39190.53560.070*
C250.41736 (17)0.18971 (16)0.61329 (14)0.0264 (5)
C260.43230 (18)0.08528 (16)0.61546 (14)0.0278 (5)
C270.54021 (19)0.03263 (18)0.61434 (15)0.0329 (6)
H27A0.5504−0.03860.61690.039*
C280.63264 (19)0.08407 (18)0.60955 (15)0.0344 (6)
H28A0.70620.04790.60820.041*
C290.61904 (19)0.18722 (18)0.60672 (15)0.0349 (6)
H29A0.68290.22200.60340.042*
C300.51106 (18)0.24000 (17)0.60880 (14)0.0310 (6)
H30A0.50140.31100.60710.037*
C310.34302 (19)−0.06530 (16)0.62645 (15)0.0316 (6)
H31A0.3618−0.10770.68360.038*
H31B0.4043−0.08000.57490.038*
C320.2277 (2)−0.09031 (18)0.62455 (17)0.0388 (6)
H32A0.2299−0.16380.62880.058*
H32B0.2101−0.04790.56770.058*
H32C0.1678−0.07550.67590.058*
O50.70638 (12)0.06592 (11)0.13410 (10)0.0317 (4)
O60.36080 (12)0.48301 (12)0.11751 (11)0.0362 (4)
N70.68644 (15)0.26576 (14)0.11614 (12)0.0294 (5)
N80.67007 (15)0.35282 (14)0.13324 (12)0.0293 (5)
N90.57197 (15)0.40407 (13)0.11906 (12)0.0307 (5)
H9N0.52980.38090.09420.037*
C330.79371 (18)0.21153 (16)0.12693 (14)0.0259 (5)
C340.80398 (18)0.10554 (16)0.13416 (14)0.0277 (5)
C350.90725 (19)0.04810 (17)0.14109 (15)0.0318 (6)
H35A0.9146−0.02360.14550.038*
C361.00003 (19)0.09627 (18)0.14159 (15)0.0348 (6)
H36A1.07080.05690.14620.042*
C370.99072 (19)0.20022 (18)0.13548 (15)0.0333 (6)
H37A1.05460.23210.13610.040*
C380.88745 (18)0.25806 (17)0.12842 (14)0.0304 (6)
H38A0.88060.32960.12460.036*
C390.7134 (2)−0.04229 (17)0.14138 (16)0.0354 (6)
H39A0.7355−0.08440.19730.043*
H39B0.7717−0.05730.08850.043*
C400.5947 (2)−0.06709 (19)0.14433 (17)0.0426 (7)
H40A0.5955−0.14070.14930.064*
H40B0.5740−0.02490.08870.064*
H40C0.5380−0.05180.19690.064*
C410.53667 (18)0.49534 (16)0.14432 (14)0.0282 (5)
C420.42322 (18)0.53686 (16)0.14433 (15)0.0297 (6)
C430.3816 (2)0.62422 (17)0.17383 (16)0.0364 (6)
H43A0.30510.65260.17400.044*
C440.4523 (2)0.67014 (17)0.20317 (16)0.0349 (6)
H44A0.42350.72920.22420.042*
C450.56442 (19)0.62991 (17)0.20172 (15)0.0336 (6)
H45A0.61230.66140.22170.040*
C460.60702 (19)0.54372 (16)0.17116 (15)0.0311 (6)
H46A0.68480.51770.16860.037*
C470.24610 (19)0.52416 (19)0.11158 (17)0.0386 (7)
H47A0.24880.59380.06710.046*
H47B0.19780.53020.17130.046*
C480.1965 (2)0.4504 (2)0.08185 (18)0.0491 (7)
H48A0.11810.47610.07710.074*
H48B0.19430.38180.12650.074*
H48C0.24500.44520.02270.074*
O70.46759 (14)0.23487 (14)0.10190 (12)0.0507 (5)
H7O0.54060.21230.09670.061*
C490.4211 (2)0.2023 (2)0.04551 (18)0.0534 (8)
H49A0.47240.2190−0.01610.080*
H49B0.34480.23790.04430.080*
H49C0.41370.12730.06900.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0283 (8)0.0449 (9)0.0346 (8)−0.0153 (7)−0.0055 (7)−0.0076 (7)
O20.0295 (8)0.0445 (8)0.0306 (7)−0.0119 (7)−0.0058 (6)−0.0146 (6)
N10.0236 (9)0.0422 (10)0.0281 (9)−0.0098 (8)−0.0026 (7)−0.0110 (8)
N20.0233 (9)0.0320 (9)0.0301 (9)−0.0036 (8)−0.0045 (7)−0.0087 (8)
N30.0280 (9)0.0401 (10)0.0298 (9)−0.0109 (8)−0.0044 (7)−0.0141 (8)
C10.0267 (10)0.0265 (11)0.0284 (10)−0.0023 (9)−0.0084 (9)−0.0067 (9)
C20.0279 (11)0.0273 (11)0.0333 (11)−0.0019 (9)−0.0107 (9)−0.0061 (9)
C30.0244 (11)0.0377 (12)0.0319 (11)0.0000 (10)−0.0070 (9)−0.0079 (10)
C40.0347 (12)0.0389 (12)0.0346 (11)0.0042 (10)−0.0138 (9)−0.0162 (10)
C50.0295 (11)0.0355 (12)0.0426 (12)−0.0009 (10)−0.0144 (10)−0.0143 (10)
C60.0232 (10)0.0338 (12)0.0323 (11)−0.0041 (9)−0.0065 (9)−0.0071 (9)
C70.0265 (11)0.0391 (13)0.0384 (13)−0.0083 (10)−0.0054 (10)−0.0009 (10)
C80.0448 (14)0.0673 (17)0.0480 (15)−0.0342 (13)−0.0114 (12)0.0014 (13)
C90.0215 (10)0.0261 (11)0.0304 (11)−0.0017 (9)−0.0076 (9)−0.0056 (9)
C100.0229 (10)0.0295 (11)0.0297 (11)−0.0021 (9)−0.0068 (9)−0.0073 (9)
C110.0321 (12)0.0359 (12)0.0271 (11)−0.0017 (10)−0.0067 (9)−0.0082 (9)
C120.0205 (11)0.0353 (12)0.0357 (12)−0.0034 (10)−0.0016 (9)−0.0048 (10)
C130.0210 (10)0.0343 (12)0.0384 (12)−0.0047 (9)−0.0077 (9)−0.0053 (10)
C140.0276 (11)0.0340 (12)0.0328 (11)−0.0011 (10)−0.0111 (9)−0.0100 (9)
C150.0391 (12)0.0416 (12)0.0296 (11)−0.0075 (11)−0.0096 (10)−0.0130 (10)
C160.0536 (14)0.0573 (15)0.0396 (13)−0.0226 (13)−0.0123 (11)−0.0138 (11)
O30.0254 (7)0.0351 (8)0.0549 (9)0.0009 (7)−0.0170 (7)−0.0115 (7)
O40.0244 (7)0.0296 (8)0.0565 (9)−0.0027 (6)−0.0147 (7)−0.0174 (7)
N40.0237 (9)0.0265 (9)0.0413 (10)0.0005 (8)−0.0109 (8)−0.0121 (8)
N50.0264 (9)0.0287 (9)0.0331 (9)−0.0029 (8)−0.0091 (7)−0.0105 (7)
N60.0246 (9)0.0318 (9)0.0428 (10)−0.0024 (8)−0.0128 (8)−0.0169 (8)
C170.0285 (11)0.0252 (11)0.0303 (11)−0.0015 (9)−0.0096 (9)−0.0057 (9)
C180.0276 (11)0.0306 (11)0.0337 (11)−0.0051 (10)−0.0091 (9)−0.0056 (9)
C190.0310 (12)0.0328 (13)0.0471 (14)0.0058 (10)−0.0101 (10)−0.0083 (11)
C200.0476 (14)0.0275 (12)0.0586 (15)0.0040 (11)−0.0169 (12)−0.0173 (11)
C210.0454 (14)0.0318 (12)0.0563 (14)−0.0017 (11)−0.0190 (11)−0.0167 (11)
C220.0309 (11)0.0267 (11)0.0450 (12)−0.0008 (10)−0.0140 (10)−0.0103 (10)
C230.0271 (11)0.0489 (15)0.0403 (13)−0.0016 (11)−0.0130 (10)−0.0036 (11)
C240.0311 (12)0.0602 (16)0.0468 (14)−0.0024 (12)−0.0165 (11)−0.0086 (12)
C250.0202 (10)0.0325 (11)0.0276 (10)−0.0022 (9)−0.0069 (8)−0.0095 (9)
C260.0255 (10)0.0300 (11)0.0315 (11)−0.0014 (9)−0.0111 (9)−0.0105 (9)
C270.0314 (11)0.0322 (12)0.0385 (12)0.0021 (10)−0.0133 (9)−0.0131 (9)
C280.0223 (10)0.0445 (13)0.0405 (12)0.0034 (10)−0.0130 (9)−0.0159 (10)
C290.0239 (10)0.0405 (13)0.0440 (12)−0.0068 (10)−0.0135 (9)−0.0109 (10)
C300.0289 (11)0.0334 (11)0.0368 (11)−0.0043 (9)−0.0128 (9)−0.0138 (9)
C310.0330 (12)0.0255 (11)0.0373 (12)−0.0024 (9)−0.0071 (10)−0.0123 (9)
C320.0396 (13)0.0343 (12)0.0462 (13)−0.0080 (11)−0.0119 (11)−0.0136 (10)
O50.0277 (7)0.0287 (8)0.0415 (8)−0.0052 (6)−0.0109 (6)−0.0107 (6)
O60.0265 (7)0.0356 (8)0.0526 (9)−0.0013 (7)−0.0171 (7)−0.0152 (7)
N70.0251 (9)0.0313 (9)0.0330 (9)−0.0027 (8)−0.0065 (7)−0.0116 (8)
N80.0263 (9)0.0283 (9)0.0324 (9)−0.0016 (8)−0.0075 (8)−0.0078 (8)
N90.0238 (9)0.0305 (10)0.0391 (10)0.0006 (8)−0.0112 (8)−0.0104 (8)
C330.0245 (10)0.0299 (11)0.0261 (10)−0.0031 (9)−0.0079 (8)−0.0100 (8)
C340.0266 (11)0.0287 (11)0.0285 (10)−0.0048 (9)−0.0078 (9)−0.0072 (9)
C350.0316 (11)0.0284 (11)0.0378 (11)−0.0005 (10)−0.0110 (9)−0.0121 (9)
C360.0287 (11)0.0391 (13)0.0365 (12)0.0021 (10)−0.0144 (10)−0.0076 (10)
C370.0262 (11)0.0395 (13)0.0367 (12)−0.0067 (10)−0.0104 (9)−0.0101 (10)
C380.0301 (11)0.0313 (11)0.0323 (11)−0.0039 (10)−0.0096 (9)−0.0105 (9)
C390.0400 (12)0.0249 (11)0.0419 (12)−0.0087 (10)−0.0118 (10)−0.0062 (10)
C400.0463 (14)0.0379 (13)0.0453 (13)−0.0162 (11)−0.0119 (11)−0.0081 (11)
C410.0272 (11)0.0253 (11)0.0295 (11)−0.0038 (9)−0.0065 (9)−0.0044 (9)
C420.0275 (11)0.0266 (11)0.0334 (11)−0.0026 (9)−0.0103 (9)−0.0039 (9)
C430.0289 (12)0.0308 (12)0.0464 (13)0.0012 (10)−0.0090 (10)−0.0094 (10)
C440.0353 (12)0.0250 (11)0.0429 (13)−0.0004 (10)−0.0087 (10)−0.0100 (10)
C450.0324 (12)0.0269 (11)0.0424 (12)−0.0043 (10)−0.0116 (10)−0.0084 (10)
C460.0266 (11)0.0276 (11)0.0380 (12)−0.0018 (9)−0.0088 (9)−0.0077 (9)
C470.0249 (11)0.0469 (14)0.0429 (13)0.0008 (11)−0.0116 (10)−0.0106 (11)
C480.0328 (12)0.0644 (17)0.0580 (15)−0.0062 (12)−0.0187 (11)−0.0210 (13)
O70.0327 (9)0.0655 (11)0.0647 (10)−0.0042 (8)−0.0145 (8)−0.0315 (9)
C490.0505 (15)0.0630 (17)0.0545 (15)−0.0103 (14)−0.0170 (13)−0.0214 (13)

Geometric parameters (Å, °)

O1—C21.369 (3)C24—H24B0.9800
O1—C71.437 (3)C24—H24C0.9800
O2—C101.367 (3)C25—C301.390 (3)
O2—C151.434 (3)C25—C261.398 (3)
N1—N21.291 (2)C26—C271.392 (3)
N1—C11.415 (3)C27—C281.384 (3)
N2—N31.308 (3)C27—H27A0.9500
N3—C91.407 (3)C28—C291.379 (3)
N3—H3N0.8800C28—H28A0.9500
C1—C61.385 (3)C29—C301.392 (3)
C1—C21.407 (3)C29—H29A0.9500
C2—C31.395 (3)C30—H30A0.9500
C3—C41.390 (3)C31—C321.503 (3)
C3—H3A0.9500C31—H31A0.9900
C4—C51.389 (3)C31—H31B0.9900
C4—H4A0.9500C32—H32A0.9800
C5—C61.386 (3)C32—H32B0.9800
C5—H5A0.9500C32—H32C0.9800
C6—H6A0.9500O5—C341.377 (3)
C7—C81.494 (4)O5—C391.434 (3)
C7—H7A0.9900O6—C421.367 (3)
C7—H7B0.9900O6—C471.438 (3)
C8—H8A0.9800N7—N81.276 (3)
C8—H8B0.9800N7—C331.425 (3)
C8—H8C0.9800N8—N91.328 (2)
C9—C141.388 (3)N9—C411.398 (3)
C9—C101.399 (3)N9—H9N0.8800
C10—C111.404 (3)C33—C381.396 (3)
C11—C121.390 (3)C33—C341.402 (3)
C11—H11A0.9500C34—C351.387 (3)
C12—C131.382 (3)C35—C361.392 (3)
C12—H12A0.9500C35—H35A0.9500
C13—C141.386 (3)C36—C371.379 (3)
C13—H13A0.9500C36—H36A0.9500
C14—H14A0.9500C37—C381.390 (3)
C15—C161.503 (3)C37—H37A0.9500
C15—H15A0.9900C38—H38A0.9500
C15—H15B0.9900C39—C401.514 (3)
C16—H16A0.9800C39—H39A0.9900
C16—H16B0.9800C39—H39B0.9900
C16—H16C0.9800C40—H40A0.9800
O3—C181.369 (3)C40—H40B0.9800
O3—C231.438 (3)C40—H40C0.9800
O4—C261.371 (3)C41—C461.388 (3)
O4—C311.428 (3)C41—C421.407 (3)
N4—N51.298 (2)C42—C431.391 (3)
N4—C171.407 (3)C43—C441.396 (4)
N5—N61.304 (3)C43—H43A0.9500
N6—C251.412 (3)C44—C451.384 (3)
N6—H6N0.8800C44—H44A0.9500
C17—C221.387 (3)C45—C461.387 (3)
C17—C181.413 (3)C45—H45A0.9500
C18—C191.386 (3)C46—H46A0.9500
C19—C201.380 (4)C47—C481.506 (4)
C19—H19A0.9500C47—H47A0.9900
C20—C211.385 (4)C47—H47B0.9900
C20—H20A0.9500C48—H48A0.9800
C21—C221.388 (3)C48—H48B0.9800
C21—H21A0.9500C48—H48C0.9800
C22—H22A0.9500O7—C491.407 (3)
C23—C241.501 (4)O7—H7O0.8807
C23—H23A0.9900C49—H49A0.9800
C23—H23B0.9900C49—H49B0.9800
C24—H24A0.9800C49—H49C0.9800
C2—O1—C7117.58 (18)C30—C25—C26119.43 (19)
C10—O2—C15117.73 (16)C30—C25—N6123.6 (2)
N2—N1—C1115.95 (19)C26—C25—N6116.94 (19)
N1—N2—N3112.46 (18)O4—C26—C27125.0 (2)
N2—N3—C9117.88 (19)O4—C26—C25115.26 (18)
N2—N3—H3N121.1C27—C26—C25119.7 (2)
C9—N3—H3N121.1C28—C27—C26120.0 (2)
C6—C1—C2119.2 (2)C28—C27—H27A120.0
C6—C1—N1124.47 (18)C26—C27—H27A120.0
C2—C1—N1116.3 (2)C29—C28—C27120.7 (2)
O1—C2—C3124.33 (19)C29—C28—H28A119.7
O1—C2—C1115.8 (2)C27—C28—H28A119.7
C3—C2—C1119.9 (2)C28—C29—C30119.5 (2)
C4—C3—C2119.6 (2)C28—C29—H29A120.2
C4—C3—H3A120.2C30—C29—H29A120.2
C2—C3—H3A120.2C25—C30—C29120.6 (2)
C5—C4—C3120.8 (2)C25—C30—H30A119.7
C5—C4—H4A119.6C29—C30—H30A119.7
C3—C4—H4A119.6O4—C31—C32107.13 (18)
C6—C5—C4119.3 (2)O4—C31—H31A110.3
C6—C5—H5A120.4C32—C31—H31A110.3
C4—C5—H5A120.4O4—C31—H31B110.3
C1—C6—C5121.2 (2)C32—C31—H31B110.3
C1—C6—H6A119.4H31A—C31—H31B108.5
C5—C6—H6A119.4C31—C32—H32A109.5
O1—C7—C8107.4 (2)C31—C32—H32B109.5
O1—C7—H7A110.2H32A—C32—H32B109.5
C8—C7—H7A110.2C31—C32—H32C109.5
O1—C7—H7B110.2H32A—C32—H32C109.5
C8—C7—H7B110.2H32B—C32—H32C109.5
H7A—C7—H7B108.5C34—O5—C39117.07 (16)
C7—C8—H8A109.5C42—O6—C47117.96 (18)
C7—C8—H8B109.5N8—N7—C33113.74 (18)
H8A—C8—H8B109.5N7—N8—N9112.79 (19)
C7—C8—H8C109.5N8—N9—C41118.98 (19)
H8A—C8—H8C109.5N8—N9—H9N120.5
H8B—C8—H8C109.5C41—N9—H9N120.5
C14—C9—C10119.84 (19)C38—C33—C34119.4 (2)
C14—C9—N3123.3 (2)C38—C33—N7124.04 (19)
C10—C9—N3116.9 (2)C34—C33—N7116.52 (19)
O2—C10—C9116.08 (17)O5—C34—C35124.6 (2)
O2—C10—C11124.3 (2)O5—C34—C33115.34 (18)
C9—C10—C11119.6 (2)C35—C34—C33120.1 (2)
C12—C11—C10119.6 (2)C34—C35—C36119.5 (2)
C12—C11—H11A120.2C34—C35—H35A120.2
C10—C11—H11A120.2C36—C35—H35A120.2
C13—C12—C11120.4 (2)C37—C36—C35121.0 (2)
C13—C12—H12A119.8C37—C36—H36A119.5
C11—C12—H12A119.8C35—C36—H36A119.5
C12—C13—C14120.2 (2)C36—C37—C38119.7 (2)
C12—C13—H13A119.9C36—C37—H37A120.2
C14—C13—H13A119.9C38—C37—H37A120.2
C13—C14—C9120.4 (2)C37—C38—C33120.3 (2)
C13—C14—H14A119.8C37—C38—H38A119.8
C9—C14—H14A119.8C33—C38—H38A119.8
O2—C15—C16107.77 (18)O5—C39—C40106.65 (18)
O2—C15—H15A110.2O5—C39—H39A110.4
C16—C15—H15A110.2C40—C39—H39A110.4
O2—C15—H15B110.2O5—C39—H39B110.4
C16—C15—H15B110.2C40—C39—H39B110.4
H15A—C15—H15B108.5H39A—C39—H39B108.6
C15—C16—H16A109.5C39—C40—H40A109.5
C15—C16—H16B109.5C39—C40—H40B109.5
H16A—C16—H16B109.5H40A—C40—H40B109.5
C15—C16—H16C109.5C39—C40—H40C109.5
H16A—C16—H16C109.5H40A—C40—H40C109.5
H16B—C16—H16C109.5H40B—C40—H40C109.5
C18—O3—C23118.40 (18)C46—C41—N9123.0 (2)
C26—O4—C31118.17 (16)C46—C41—C42119.7 (2)
N5—N4—C17115.73 (19)N9—C41—C42117.3 (2)
N4—N5—N6112.45 (18)O6—C42—C43125.2 (2)
N5—N6—C25118.21 (19)O6—C42—C41115.1 (2)
N5—N6—H6N120.9C43—C42—C41119.6 (2)
C25—N6—H6N120.9C42—C43—C44120.0 (2)
C22—C17—N4124.1 (2)C42—C43—H43A120.0
C22—C17—C18119.4 (2)C44—C43—H43A120.0
N4—C17—C18116.5 (2)C45—C44—C43120.2 (2)
O3—C18—C19124.8 (2)C45—C44—H44A119.9
O3—C18—C17115.8 (2)C43—C44—H44A119.9
C19—C18—C17119.4 (2)C44—C45—C46120.2 (2)
C20—C19—C18120.3 (2)C44—C45—H45A119.9
C20—C19—H19A119.8C46—C45—H45A119.9
C18—C19—H19A119.8C45—C46—C41120.3 (2)
C19—C20—C21120.7 (2)C45—C46—H46A119.8
C19—C20—H20A119.6C41—C46—H46A119.8
C21—C20—H20A119.6O6—C47—C48107.2 (2)
C20—C21—C22119.6 (2)O6—C47—H47A110.3
C20—C21—H21A120.2C48—C47—H47A110.3
C22—C21—H21A120.2O6—C47—H47B110.3
C17—C22—C21120.6 (2)C48—C47—H47B110.3
C17—C22—H22A119.7H47A—C47—H47B108.5
C21—C22—H22A119.7C47—C48—H48A109.5
O3—C23—C24107.0 (2)C47—C48—H48B109.5
O3—C23—H23A110.3H48A—C48—H48B109.5
C24—C23—H23A110.3C47—C48—H48C109.5
O3—C23—H23B110.3H48A—C48—H48C109.5
C24—C23—H23B110.3H48B—C48—H48C109.5
H23A—C23—H23B108.6C49—O7—H7O111.0
C23—C24—H24A109.5O7—C49—H49A109.5
C23—C24—H24B109.5O7—C49—H49B109.5
H24A—C24—H24B109.5H49A—C49—H49B109.5
C23—C24—H24C109.5O7—C49—H49C109.5
H24A—C24—H24C109.5H49A—C49—H49C109.5
H24B—C24—H24C109.5H49B—C49—H49C109.5
C1—N1—N2—N3−177.34 (17)C18—O3—C23—C24175.79 (18)
N1—N2—N3—C9−178.95 (17)N5—N6—C25—C30−15.0 (3)
N2—N1—C1—C61.2 (3)N5—N6—C25—C26165.52 (18)
N2—N1—C1—C2178.45 (18)C31—O4—C26—C271.6 (3)
C7—O1—C2—C310.1 (3)C31—O4—C26—C25−177.33 (18)
C7—O1—C2—C1−169.62 (18)C30—C25—C26—O4179.89 (19)
C6—C1—C2—O1−178.68 (19)N6—C25—C26—O4−0.6 (3)
N1—C1—C2—O13.9 (3)C30—C25—C26—C270.9 (3)
C6—C1—C2—C31.6 (3)N6—C25—C26—C27−179.60 (19)
N1—C1—C2—C3−175.85 (19)O4—C26—C27—C28180.0 (2)
O1—C2—C3—C4178.2 (2)C25—C26—C27—C28−1.1 (3)
C1—C2—C3—C4−2.1 (3)C26—C27—C28—C290.6 (3)
C2—C3—C4—C51.0 (3)C27—C28—C29—C300.1 (3)
C3—C4—C5—C60.6 (3)C26—C25—C30—C29−0.2 (3)
C2—C1—C6—C50.1 (3)N6—C25—C30—C29−179.7 (2)
N1—C1—C6—C5177.3 (2)C28—C29—C30—C25−0.3 (3)
C4—C5—C6—C1−1.1 (3)C26—O4—C31—C32−176.52 (18)
C2—O1—C7—C8177.48 (19)C33—N7—N8—N9177.30 (16)
N2—N3—C9—C14−6.8 (3)N7—N8—N9—C41173.13 (17)
N2—N3—C9—C10171.86 (18)N8—N7—C33—C38−18.7 (3)
C15—O2—C10—C9−178.17 (18)N8—N7—C33—C34162.85 (18)
C15—O2—C10—C11−0.1 (3)C39—O5—C34—C35−0.3 (3)
C14—C9—C10—O2179.74 (18)C39—O5—C34—C33179.99 (18)
N3—C9—C10—O21.0 (3)C38—C33—C34—O5178.60 (18)
C14—C9—C10—C111.5 (3)N7—C33—C34—O5−2.9 (3)
N3—C9—C10—C11−177.20 (19)C38—C33—C34—C35−1.1 (3)
O2—C10—C11—C12−179.1 (2)N7—C33—C34—C35177.37 (19)
C9—C10—C11—C12−1.1 (3)O5—C34—C35—C36−179.2 (2)
C10—C11—C12—C130.3 (3)C33—C34—C35—C360.5 (3)
C11—C12—C13—C140.0 (3)C34—C35—C36—C370.1 (3)
C12—C13—C14—C90.5 (3)C35—C36—C37—C38−0.2 (3)
C10—C9—C14—C13−1.3 (3)C36—C37—C38—C33−0.4 (3)
N3—C9—C14—C13177.4 (2)C34—C33—C38—C371.1 (3)
C10—O2—C15—C16−179.05 (19)N7—C33—C38—C37−177.32 (19)
C17—N4—N5—N6179.42 (16)C34—O5—C39—C40177.32 (18)
N4—N5—N6—C25178.42 (17)N8—N9—C41—C469.9 (3)
N5—N4—C17—C223.0 (3)N8—N9—C41—C42−168.33 (18)
N5—N4—C17—C18−177.49 (18)C47—O6—C42—C435.7 (3)
C23—O3—C18—C1916.0 (3)C47—O6—C42—C41−176.92 (18)
C23—O3—C18—C17−163.72 (18)C46—C41—C42—O6−179.48 (18)
C22—C17—C18—O3179.33 (19)N9—C41—C42—O6−1.2 (3)
N4—C17—C18—O3−0.2 (3)C46—C41—C42—C43−1.9 (3)
C22—C17—C18—C19−0.4 (3)N9—C41—C42—C43176.37 (19)
N4—C17—C18—C19−179.97 (19)O6—C42—C43—C44177.3 (2)
O3—C18—C19—C20179.5 (2)C41—C42—C43—C440.0 (3)
C17—C18—C19—C20−0.8 (3)C42—C43—C44—C451.0 (3)
C18—C19—C20—C211.2 (4)C43—C44—C45—C460.0 (3)
C19—C20—C21—C22−0.3 (4)C44—C45—C46—C41−1.9 (3)
N4—C17—C22—C21−179.2 (2)N9—C41—C46—C45−175.31 (19)
C18—C17—C22—C211.3 (3)C42—C41—C46—C452.9 (3)
C20—C21—C22—C17−1.0 (4)C42—O6—C47—C48−179.43 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···N40.882.203.024 (3)156
N6—H6N···N10.882.203.033 (3)158
N9—H9N···O70.882.192.920 (3)140
O7—H7O···N70.882.152.839 (3)134
C28—H28A···Cg1i0.952.893.712 (3)146
C36—H36A···Cg2i0.952.743.549 (3)144
C15—H15A···Cg3ii0.992.763.463 (3)128
C32—H32C···Cg3i0.982.803.593 (3)138
C40—H40C···Cg4i0.982.843.632 (3)138

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2190).

References

  • Bruker (1998). SAINT-Plus, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem 67, 2271–2277. [PubMed]
  • Grell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev 8, 1–56.
  • Hematyar, M. & Rofouei, M. K. (2008). Anal. Sci 24, x117–x118.
  • Leman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem 32, 4324–4336.
  • Melardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci 24, x281–x282.
  • Meldola, R. & Streatfield, F. W. (1888). J. Chem. Soc 61, 102–118.
  • Payehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792–1798.
  • Rofouei, M. K., Melardi, M. R., Salemi, Y. & Kazemi, S. R. (2009). Acta Cryst E65, o719. [PMC free article] [PubMed]
  • Rofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci 22, x79–x80.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry. Vol. 2, pp. 189–244. Oxford: Pergamon Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography