PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2381.
Published online 2009 September 9. doi:  10.1107/S1600536809035557
PMCID: PMC2970391

A chiral photochromic Schiff base: (R)-4-meth­oxy-2-[(1-phenyl­ethyl)imino­meth­yl]phenol

Abstract

The title chiral photochromic Schiff base compound, C16H17NO2, was synthesized from (R)-1-phenyl­ethyl­amine and 5-methoxy­salicylaldehyde. The mol­ecule of the title compound exists in the phenol–imine tautomeric form. The dihedral angle between the two aromatic rings is 62.61 (11)°. An intra­molecular O—H(...)N hydrogen bond with an O(...)N distance of 2.589 (2) Å is observed. The crystal packing is stabilized by C—H(...)π inter­actions involving the aromatic ring.

Related literature

For chiral metal complexes and their hybrid materials, see: Akitsu (2007 [triangle]); Akitsu & Einaga (2004 [triangle], 2005a [triangle],b [triangle], 2006a [triangle]); Akitsu et al. (2009 [triangle]); Yamada (1999 [triangle]). For structral comparison of the 1-phenylethylamine moiety, see: Antonov et al. (1995 [triangle]); Liu et al. (1997 [triangle]). For related Schiff base ligands and their functions, see: Akitsu et al. (2004 [triangle]); Akitsu & Einaga (2006b [triangle]); Hadjoudis et al. (1987 [triangle], 2004 [triangle]); Santoni & Rehder (2004 [triangle]); Sliwa et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2381-scheme1.jpg

Experimental

Crystal data

  • C16H17NO2
  • M r = 255.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2381-efi1.jpg
  • a = 8.270 (4) Å
  • b = 5.886 (3) Å
  • c = 13.920 (7) Å
  • β = 93.254 (7)°
  • V = 676.4 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.21 × 0.19 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.983, T max = 0.994
  • 3805 measured reflections
  • 1677 independent reflections
  • 1454 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.088
  • S = 0.99
  • 1677 reflections
  • 240 parameters
  • 1 restraint
  • All H-atom parameters refined
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035557/ci2897sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035557/ci2897Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Kato Foundation for the Promotion of Science.

supplementary crystallographic information

Comment

Because of structural flexibility and their application for switching materials and so on, Schiff base compounds are one of the most extensively used ligands in the field of coordination chemistry (Yamada, 1999). Especially, aiming at multifunctional chiral materials, we have investigated Schiff base CuII, NiII, or ZnII complexes in view of thermally induced structural phase transition in the solid state (Akitsu & Einaga, 2004), structural change by occlusion of solvents (Akitsu & Einaga, 2005a), chiral conformational change in a solution induced by a photochromic solute (Akitsu & Einaga, 2005b,2006a; Akitsu, 2007), and novel induced CD to achiral metallodendrimers (Akitsu et al., 2009). On the other hand, free Schiff base ligands (Akitsu et al., 2004, Akitsu & Einaga, 2006b) have been also studied as multifunctional components, for example photochromic and thermochromic or fluorescence materials (Hadjoudis et al., 2004) and nonlinear optical materials (Sliwa et al., 2005) and so on. In order to clarify the role of electron-donating methoxy group, as free ligands for tautomerism and photochromism (Hadjoudis et al., 1987), crystal structure of the title compound, (I), has been determined.

Crystal structure of (I) is similar to those of the analogous derivatives (Santoni & Rehder, 2004; Akitsu & Einaga, 2006b). Molecule of (I) (Fig. 1) adopts an E configuration with respect to the imine C═N double bond with a C6—C7—N1—C8 torsion angle of -179.40 (18)°. Thus, the π-conjugate system around the imine group is essentially planar. The C1—O1 bond distance of 1.361 (3) Å suggests that it is in the phenol-imine tautomer. The contraction of the C7═N1 bond [1.283 (3) Å] is also in agreement with the phenol-imine tautomer. As for the methoxy group, the O2—C4 and O2—C16 bond distaces are 1.374 (3) and 1.422 (3) Å, respectively, and the C4—O2—C16 bond angle is 116.9 (2)°. Beside them, geometric parameters reported here agree with corresponding values reported for analogous Schiff base compounds containing the 1-phenylethylamine group (Antonov et al., 1995; Liu et al., 1997). The planarity of (I) is stabilized by an intramolecular O—H···N hydrogen bond (Table 1). However, there is no intermolecular hydrogen bonds associated with the methoxy group. The crystal packing is stabilized by C—H···π interactions involving the C10-C15 ring.

Experimental

Treatment of equimolar R-1-phenylethylamine and 5-methoxysalicylaldehyde in methanol at 298 K overnight gave rise to a yellow-green compound (I). Prismatic crystals of (I) were grown from the resulting solution over a period of several days (yield 39.0%). Analysis found: C 73.98, H 6.49, N 5.37%; calculated for C16H17NO2: C 75.27, H 6.71, N, 5.49%. (precipitates containing non-stoichiometric cystalline water) m.p. 371 K. IR (Nujol, ν, cm-1): 1632 (imine band). UV-VIS (diffuse reflectance, nm): 255, 329, 470s h.

Refinement

All H atoms were located in a difference map and refined freely [O-H = 0.98 (3) Å and C-H = 0.91 (3)-1.02 (3) Å]. Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C16H17NO2F(000) = 272
Mr = 255.31Dx = 1.253 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1657 reflections
a = 8.270 (4) Åθ = 2.5–27.5°
b = 5.886 (3) ŵ = 0.08 mm1
c = 13.920 (7) ÅT = 100 K
β = 93.254 (7)°Plate, yellow
V = 676.4 (6) Å30.21 × 0.19 × 0.07 mm
Z = 2

Data collection

Brruker SMART CCD area-detector diffractometer1677 independent reflections
Radiation source: fine-focus sealed tube1454 reflections with I > 2σ(I)
graphiteRint = 0.074
Detector resolution: 8.333 pixels mm-1θmax = 27.5°, θmin = 1.5°
[var phi] and ω scansh = −10→8
Absorption correction: multi-scan (SADABS; Bruker, 1998)k = −7→7
Tmin = 0.983, Tmax = 0.994l = −17→16
3805 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088All H-atom parameters refined
S = 0.99w = 1/[σ2(Fo2) + (0.038P)2] where P = (Fo2 + 2Fc2)/3
1677 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = −0.18 e Å3

Special details

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.10235 (18)0.3421 (3)0.24677 (11)0.0246 (4)
O2−0.34502 (18)0.0560 (3)−0.11019 (11)0.0236 (4)
N10.0495 (2)−0.0409 (3)0.26781 (13)0.0209 (4)
C1−0.1599 (2)0.2610 (4)0.15989 (16)0.0204 (5)
C2−0.2717 (3)0.3907 (4)0.10592 (17)0.0235 (5)
C3−0.3316 (2)0.3147 (4)0.01743 (17)0.0214 (5)
C4−0.2782 (2)0.1095 (4)−0.02039 (15)0.0202 (5)
C5−0.1684 (3)−0.0231 (4)0.03255 (16)0.0200 (5)
C6−0.1087 (2)0.0500 (4)0.12470 (15)0.0190 (5)
C70.0002 (2)−0.0964 (4)0.18197 (16)0.0198 (5)
C80.1607 (3)−0.1916 (4)0.32334 (16)0.0204 (5)
C90.0764 (3)−0.2731 (5)0.41192 (19)0.0253 (6)
C100.3138 (2)−0.0565 (4)0.34822 (15)0.0200 (5)
C150.4606 (3)−0.1240 (5)0.31292 (16)0.0237 (5)
C140.5988 (3)0.0075 (5)0.32986 (17)0.0265 (6)
C130.5917 (3)0.2063 (5)0.38184 (17)0.0269 (6)
C120.4471 (3)0.2741 (5)0.41913 (16)0.0251 (5)
C110.3098 (3)0.1428 (4)0.40203 (16)0.0224 (5)
C16−0.3038 (3)−0.1589 (5)−0.14857 (18)0.0255 (6)
H1−0.041 (3)0.216 (6)0.2758 (19)0.044 (9)*
H2−0.307 (3)0.526 (5)0.1294 (16)0.020 (6)*
H3−0.408 (3)0.398 (5)−0.0179 (16)0.024 (6)*
H5−0.129 (3)−0.164 (4)0.0095 (14)0.013 (6)*
H70.039 (3)−0.236 (5)0.1538 (15)0.021 (6)*
H80.186 (3)−0.326 (5)0.2845 (16)0.022 (6)*
H150.466 (3)−0.261 (5)0.2753 (19)0.036 (8)*
H140.701 (3)−0.044 (5)0.3014 (16)0.030 (7)*
H130.684 (3)0.319 (6)0.390 (2)0.046 (8)*
H120.443 (3)0.421 (5)0.4568 (16)0.028 (7)*
H110.210 (3)0.198 (5)0.4247 (16)0.029 (6)*
H9A0.045 (3)−0.149 (5)0.4484 (17)0.031 (7)*
H16A−0.330 (3)−0.274 (5)−0.1053 (18)0.031 (7)*
H9B−0.020 (3)−0.371 (5)0.3935 (16)0.026 (6)*
H16B−0.191 (3)−0.172 (4)−0.1610 (14)0.014 (5)*
H9C0.147 (3)−0.381 (6)0.4531 (19)0.043 (8)*
H16C−0.365 (3)−0.172 (5)−0.2090 (18)0.027 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0236 (8)0.0249 (10)0.0252 (9)−0.0010 (8)0.0002 (7)−0.0063 (8)
O20.0230 (8)0.0276 (10)0.0198 (8)0.0002 (7)−0.0012 (6)0.0021 (8)
N10.0171 (8)0.0238 (11)0.0218 (10)−0.0012 (8)0.0011 (7)−0.0013 (9)
C10.0191 (10)0.0217 (14)0.0208 (12)−0.0029 (10)0.0046 (9)−0.0015 (10)
C20.0208 (10)0.0195 (13)0.0306 (13)0.0001 (10)0.0055 (9)−0.0011 (12)
C30.0144 (10)0.0230 (13)0.0268 (13)0.0015 (9)0.0023 (9)0.0066 (11)
C40.0174 (10)0.0251 (14)0.0184 (12)−0.0031 (9)0.0035 (9)0.0022 (10)
C50.0173 (10)0.0210 (13)0.0219 (12)−0.0021 (9)0.0033 (8)−0.0003 (10)
C60.0160 (9)0.0203 (12)0.0209 (11)−0.0021 (9)0.0031 (9)0.0001 (10)
C70.0155 (9)0.0230 (13)0.0212 (12)−0.0017 (9)0.0043 (8)0.0002 (10)
C80.0202 (10)0.0194 (12)0.0215 (12)0.0014 (9)0.0002 (9)−0.0014 (10)
C90.0233 (11)0.0265 (14)0.0263 (13)−0.0046 (11)0.0019 (10)0.0000 (11)
C100.0219 (10)0.0228 (13)0.0149 (11)−0.0009 (10)−0.0015 (8)0.0034 (10)
C150.0234 (11)0.0286 (14)0.0193 (12)0.0033 (10)0.0024 (9)0.0005 (11)
C140.0213 (11)0.0342 (16)0.0242 (13)0.0011 (10)0.0042 (9)0.0044 (11)
C130.0258 (12)0.0322 (15)0.0224 (13)−0.0081 (11)−0.0012 (10)0.0043 (11)
C120.0302 (12)0.0255 (14)0.0192 (12)−0.0041 (11)−0.0014 (9)0.0002 (11)
C110.0219 (11)0.0233 (13)0.0219 (12)0.0021 (10)0.0011 (9)0.0000 (10)
C160.0269 (12)0.0280 (15)0.0217 (14)0.0011 (11)0.0011 (10)−0.0009 (12)

Geometric parameters (Å, °)

O1—C11.361 (3)C8—H80.99 (3)
O1—H10.98 (3)C9—H9A0.93 (3)
O2—C41.374 (3)C9—H9B1.00 (3)
O2—C161.422 (3)C9—H9C1.02 (3)
N1—C71.283 (3)C10—C151.393 (3)
N1—C81.466 (3)C10—C111.393 (3)
C1—C21.387 (3)C15—C141.390 (4)
C1—C61.409 (3)C15—H150.96 (3)
C2—C31.376 (3)C14—C131.379 (4)
C2—H20.91 (3)C14—H141.00 (2)
C3—C41.399 (3)C13—C121.389 (3)
C3—H30.92 (3)C13—H131.01 (3)
C4—C51.379 (3)C12—C111.383 (3)
C5—C61.415 (3)C12—H121.01 (3)
C5—H50.95 (2)C11—H110.95 (3)
C6—C71.452 (3)C16—H16A0.94 (3)
C7—H70.97 (3)C16—H16B0.96 (2)
C8—C101.519 (3)C16—H16C0.96 (3)
C8—C91.528 (3)
C1—O1—H1104.5 (17)C8—C9—H9A110.3 (16)
C4—O2—C16116.9 (2)C8—C9—H9B111.4 (13)
C7—N1—C8119.6 (2)H9A—C9—H9B111 (2)
O1—C1—C2118.5 (2)C8—C9—H9C112.1 (14)
O1—C1—C6121.4 (2)H9A—C9—H9C110 (2)
C2—C1—C6120.1 (2)H9B—C9—H9C102 (2)
C3—C2—C1120.0 (2)C15—C10—C11118.5 (2)
C3—C2—H2119.8 (16)C15—C10—C8120.2 (2)
C1—C2—H2120.2 (16)C11—C10—C8121.22 (19)
C2—C3—C4120.8 (2)C14—C15—C10120.4 (2)
C2—C3—H3120.4 (16)C14—C15—H15119.8 (16)
C4—C3—H3118.8 (16)C10—C15—H15119.8 (16)
O2—C4—C5125.1 (2)C13—C14—C15120.2 (2)
O2—C4—C3114.9 (2)C13—C14—H14121.9 (17)
C5—C4—C3120.0 (2)C15—C14—H14117.9 (17)
C4—C5—C6119.9 (2)C14—C13—C12120.2 (2)
C4—C5—H5122.7 (14)C14—C13—H13124.3 (17)
C6—C5—H5117.4 (14)C12—C13—H13115.3 (18)
C1—C6—C5119.1 (2)C11—C12—C13119.4 (2)
C1—C6—C7121.4 (2)C11—C12—H12121.2 (14)
C5—C6—C7119.4 (2)C13—C12—H12119.4 (14)
N1—C7—C6121.0 (2)C12—C11—C10121.2 (2)
N1—C7—H7119.8 (14)C12—C11—H11117.8 (17)
C6—C7—H7119.2 (14)C10—C11—H11120.8 (17)
N1—C8—C10107.1 (2)O2—C16—H16A109.4 (17)
N1—C8—C9108.32 (18)O2—C16—H16B113.2 (14)
C10—C8—C9113.1 (2)H16A—C16—H16B109 (2)
N1—C8—H8110.1 (14)O2—C16—H16C106.1 (17)
C10—C8—H8110.1 (14)H16A—C16—H16C112 (2)
C9—C8—H8108.1 (14)H16B—C16—H16C107.6 (18)
O1—C1—C2—C3179.53 (18)C1—C6—C7—N12.0 (3)
C6—C1—C2—C3−0.6 (3)C5—C6—C7—N1−176.18 (18)
C1—C2—C3—C4−1.6 (3)C7—N1—C8—C10120.2 (2)
C16—O2—C4—C53.7 (3)C7—N1—C8—C9−117.5 (2)
C16—O2—C4—C3−175.42 (18)N1—C8—C10—C15−116.8 (2)
C2—C3—C4—O2−178.62 (18)C9—C8—C10—C15124.0 (2)
C2—C3—C4—C52.2 (3)N1—C8—C10—C1159.8 (3)
O2—C4—C5—C6−179.69 (17)C9—C8—C10—C11−59.5 (3)
C3—C4—C5—C6−0.6 (3)C11—C10—C15—C14−1.1 (3)
O1—C1—C6—C5−177.98 (17)C8—C10—C15—C14175.5 (2)
C2—C1—C6—C52.2 (3)C10—C15—C14—C130.0 (4)
O1—C1—C6—C73.8 (3)C15—C14—C13—C121.2 (4)
C2—C1—C6—C7−176.03 (19)C14—C13—C12—C11−1.3 (4)
C4—C5—C6—C1−1.5 (3)C13—C12—C11—C100.1 (4)
C4—C5—C6—C7176.70 (19)C15—C10—C11—C121.1 (3)
C8—N1—C7—C6−179.40 (18)C8—C10—C11—C12−175.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.97 (3)1.72 (5)2.589 (2)151 (3)
C12—H12···Cg1i1.03 (4)2.72 (3)3.536 (3)137 (3)
C16—H16C···Cg1ii0.98 (4)2.71 (3)3.563 (3)149 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2897).

References

  • Akitsu, T. (2007). Polyhedron, 26, 2527–2535.
  • Akitsu, T. & Einaga, Y. (2004). Acta Cryst. C60, m640–m642. [PubMed]
  • Akitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869–1877.
  • Akitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933–2943.
  • Akitsu, T. & Einaga, Y. (2006a). Polyhedron, 25, 1089–1095.
  • Akitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, o4315–o4317.
  • Akitsu, T., Takeuchi, Y. & Einaga, Y. (2004). Acta Cryst. C60, o801–o802. [PubMed]
  • Akitsu, T., Yamaguchi, J., Uchida, N. & Aritake, Y. (2009). Res. Lett. Mater. Sci. 484172 (4 pages).
  • Antonov, D. Y., Belokon, Y. N., Ikonnikov, N. S., Orlova, S. A., Pisarevsky, A. P., Raevski, N. I., Rozenberg, V. I., Sergeeva, E. V., Struchkov, Y. T., Tararov, V. I. & Vorontsov, E. V. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1873–1879.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162, 521–530.
  • Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345–1360.
  • Liu, Q., Ding, M., Lin, Y. & Xing, Y. (1997). J. Organomet. Chem.548, 139–142.
  • Santoni, G. & Rehder, D. (2004). J. Inorg. Biochem.98, 758–764. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sliwa, M., Letrard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Nakatani, K. (2005). Chem. Mater.17, 4727–4735.
  • Yamada, S. (1999). Coord. Chem. Rev.190192, 537–555.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography