PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2326.
Published online 2009 September 5. doi:  10.1107/S1600536809033224
PMCID: PMC2970389

4,4′-Azinodibenzoic acid

Abstract

The title compound, C14H10N2O4, shows crystallographic inversion symmetry and has one half-mol­ecule in the asymmetric unit. In the crystal, mol­ecules are linked into chains running along the cell diagonal by O—H(...)O hydrogen-bonding inter­actions.

Related literature

For the use of azodibenzoate-based systems as bridging aromatic carboxyl­ate ligands in coordination networks, see: Chen et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2326-scheme1.jpg

Experimental

Crystal data

  • C14H10N2O4
  • M r = 270.16
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2326-efi1.jpg
  • a = 3.772 (2) Å
  • b = 6.322 (5) Å
  • c = 12.692 (3) Å
  • α = 79.323 (5)°
  • β = 88.199 (4)°
  • γ = 88.435 (5)°
  • V = 297.2 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.16 × 0.14 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick 1996 [triangle]) T min = 0.962, T max = 0.971
  • 2173 measured reflections
  • 1351 independent reflections
  • 786 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.100
  • S = 0.86
  • 1351 reflections
  • 91 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033224/bt5033sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033224/bt5033Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Zhejiang Ocean University and the Science Foundation for Young Teachers of Northeast Normal University (No. 20080305) for support.

supplementary crystallographic information

Comment

Azodibenzoate-based systems represent one type of bridging aromatic carboxylate ligand employed in the generation of coordination networks (Chen et al., 2008). There is half a molecule in the asymmetric unit of the title compound (Fig. 1). In the crystal, molecules are linked into chains by O—H···O hydrogen-bonding interactions (Table 2).

Experimental

A mixture of ZnCl2.2H2O (0.5 mmol), 4,4'-azodibenzoatic acid (0.5 mmol), and H2O (500 mmol) was heated at 140 oC for 3 days. After the mixture was slowly cooled to room temperature, pale yellow crystals of the title compound were yielded (22% yield).

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier).

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) -x, -y, -z.

Crystal data

C14H10N2O4Z = 1
Mr = 270.16F(000) = 140
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.772 (2) ÅCell parameters from 1351 reflections
b = 6.322 (5) Åθ = 3.0–29.0°
c = 12.692 (3) ŵ = 0.11 mm1
α = 79.323 (5)°T = 293 K
β = 88.199 (4)°Block, pale yellow
γ = 88.435 (5)°0.16 × 0.14 × 0.12 mm
V = 297.2 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer1351 independent reflections
Radiation source: fine-focus sealed tube786 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 29.0°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick 1996)h = −5→4
Tmin = 0.962, Tmax = 0.971k = −8→5
2173 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.86w = 1/[σ2(Fo2) + (0.0555P)2] where P = (Fo2 + 2Fc2)/3
1351 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0410 (4)−0.0391 (3)0.23081 (12)0.0356 (4)
H1−0.0514−0.17670.24500.043*
C20.1284 (4)0.0608 (3)0.31492 (12)0.0343 (4)
H20.0924−0.00900.38550.041*
C30.2692 (4)0.2646 (2)0.29319 (11)0.0292 (4)
C40.3691 (4)0.3697 (2)0.38301 (12)0.0315 (4)
C50.3203 (4)0.3700 (2)0.18790 (12)0.0337 (4)
H50.41470.50700.17380.040*
C60.2312 (4)0.2720 (3)0.10404 (12)0.0355 (4)
H60.26400.34260.03340.043*
C70.0913 (4)0.0659 (2)0.12647 (12)0.0315 (4)
N1−0.0103 (4)−0.0518 (2)0.04644 (9)0.0372 (4)
O10.2870 (4)0.2717 (2)0.47782 (9)0.0545 (4)
H1A0.35240.34170.52170.082*
O20.5255 (3)0.54435 (18)0.36449 (9)0.0453 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0452 (10)0.0306 (9)0.0329 (9)−0.0099 (7)−0.0026 (7)−0.0095 (7)
C20.0438 (10)0.0360 (9)0.0243 (8)−0.0081 (8)−0.0014 (7)−0.0072 (7)
C30.0321 (9)0.0322 (8)0.0261 (8)−0.0037 (7)−0.0030 (6)−0.0115 (7)
C40.0377 (9)0.0334 (9)0.0253 (8)−0.0060 (7)−0.0040 (6)−0.0092 (7)
C50.0436 (10)0.0295 (8)0.0299 (9)−0.0082 (7)−0.0009 (7)−0.0092 (7)
C60.0465 (10)0.0376 (9)0.0240 (8)−0.0067 (7)−0.0030 (7)−0.0084 (7)
C70.0333 (9)0.0349 (9)0.0299 (9)−0.0023 (7)−0.0048 (7)−0.0144 (7)
N10.0471 (8)0.0382 (8)0.0300 (7)−0.0081 (7)−0.0058 (7)−0.0143 (6)
O10.0875 (10)0.0544 (8)0.0254 (6)−0.0314 (7)−0.0023 (6)−0.0128 (6)
O20.0674 (8)0.0397 (7)0.0321 (7)−0.0215 (6)−0.0027 (6)−0.0119 (5)

Geometric parameters (Å, °)

C1—C71.377 (2)C4—O11.2800 (18)
C1—C21.389 (2)C5—C61.381 (2)
C1—H10.9300C5—H50.9300
C2—C31.384 (2)C6—C71.396 (2)
C2—H20.9300C6—H60.9300
C3—C51.388 (2)C7—N11.4327 (19)
C3—C41.485 (2)N1—N1i1.239 (2)
C4—O21.246 (2)O1—H1A0.8200
C7—C1—C2119.91 (16)C6—C5—C3120.22 (15)
C7—C1—H1120.0C6—C5—H5119.9
C2—C1—H1120.0C3—C5—H5119.9
C3—C2—C1119.70 (15)C5—C6—C7119.22 (15)
C3—C2—H2120.2C5—C6—H6120.4
C1—C2—H2120.2C7—C6—H6120.4
C2—C3—C5120.28 (14)C1—C7—C6120.67 (14)
C2—C3—C4119.73 (14)C1—C7—N1115.05 (15)
C5—C3—C4119.99 (15)C6—C7—N1124.28 (14)
O2—C4—O1123.10 (14)N1i—N1—C7114.04 (17)
O2—C4—C3120.27 (14)C4—O1—H1A109.5
O1—C4—C3116.63 (15)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O2ii0.821.812.6181 (17)170

Symmetry codes: (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5033).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z.-F., Zhang, Z.-L., Tan, Y.-H., Tang, Y.-Z., Fun, H.-K., Zhou, Z.-Y., Abrahams, B. F. & Liang, H. (2008). CrystEngComm, 10, 217–231.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography