PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2351.
Published online 2009 September 5. doi:  10.1107/S1600536809035132
PMCID: PMC2970386

(E)-Ethyl 2-cyano-3-(3,4-dihydr­oxy-5-nitro­phen­yl)acrylate

Abstract

The title compound, C12H10N2O6, was synthesized via a Knoevenagel condensation and crystallized from ethanol. In the crystal, strong classical inter­molecular O—H(...)O hydrogen bonds and weak C—H(...)N contacts link the mol­ecules into ribbons extending along [010]. Intra­molecular O—H(...)O and C—H(...)N contacts support the planar conformation of the mol­ecules (mean deivation 0.0270 Å).

Related literature

For the syntheses of some potent and selective catechol O-methyl­transferase inhibitors, see: Bäckström et al. (1989 [triangle]). For structure–activity relationships of catechol O-methyl­transferase inhibitors, see: Tervo et al. (2003 [triangle]). For Entacapone-related crystal structures, see: Zheng et al. (2007 [triangle]). For the synthesis and anti­cancer evaluation of E-2-cyano-(3-substituted phen­yl)acyl­amides, see: Zhou et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2351-scheme1.jpg

Experimental

Crystal data

  • C12H10N2O6
  • M r = 278.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2351-efi1.jpg
  • a = 24.983 (9) Å
  • b = 13.485 (5) Å
  • c = 7.312 (3) Å
  • β = 105.911 (4)°
  • V = 2369.0 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 93 K
  • 0.40 × 0.20 × 0.10 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer
  • Absorption correction: none
  • 9288 measured reflections
  • 2714 independent reflections
  • 2134 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.118
  • S = 1.00
  • 2714 reflections
  • 190 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035132/si2196sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035132/si2196Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr F. Xu (Taizhou Vocational & Technical College) and Mr G. Chen for their help.

supplementary crystallographic information

Comment

Entacapone has been found to possess anticancer activity. Structure-activity relationships of entacapone revealed that catechol, cyano moieties and trans double-bond are necessary to sustain the activity and a nitro group substituted at C5 phenyl ring is preferable, and the amide group could be modified. (Bäckström et al., 1989 & Tervo et al., 2003) In continuation of our work on synthesis, crystal structure and anticancer evaluation of E-2-cyano-(3-substituted phenyl)acylamides, (Zheng et al., 2007 & Zhou et al., 2009) we synthesized E-2-cyano-substituted phenyl acrylic acid or its esters under Knoevenagel condensation, among which only E-2-cyano-3-(3,4-dihydroxyphenyl)acrylic acid had good in vitro KB inhibitory activity at IC50 36 µM. Herein, we present the structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1. The phenyl ring, atoms C7 > C9, O1 > O6 and N2 are almost coplanar, which makes dihedral angles of 14.2 (2)° and 8.72 (2)° with the planes C8/N10/C1 and O5/C11/C12, respectively. As shown in Fig. 2, the molecules are linked into chains along the b axis to form ribbons which are oriented parallel to the a,b plane. There are two intermolecular and two intramolecular (O—H···O and C1—H···N) hydrogen bonds (Table 1) which contribute to the formation of parallel ribbons in the crystal lattice.

Experimental

To a stirred ethanol solution, was added 3,4-dihydroxy-5-nitrobenzaldehyde (4.9 g, 27 mmol), ethyl 2-cyanoacetate (3.4 g, 30 mmol) and ammonium acetate (0.75 g, 9.7 mmol). The mixture was heated to reflux for 6 h before filtration and the solid obtained was recrystallized from ethanol to afford the title compound as yellow solid, 6.1 g (81.9%); mp: 484–485 K; IR (KBr): 3446, 3232, 2223, 1687, 1602, 1543, 1284, 1221 cm-1; 1H NMR (DMSO-d6, 400 MHz) p.p.m.: 8.29, 8.10, 7.89, 4.32–4.28, 1.31–1.28; EIMS (%): 278 (M+, 17), 250 (31), 233 (23), 202 (55), 174 (31), 158 (34), 130 (25), 102 (28). The title compound was dissolved in ethanol and the solution evaporated gradually at r.t. to give single crystals of (I).

Refinement

H atoms of the O—H groups were located from difference Fourier maps, they were freely refined. All H atoms of parent C atoms were placed in calculated positions and treated as riding, with C—H = 0.95 Å, and their displacement parameters set to Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
: The molecular structure of (I) shown with 50% probability displacement ellipsoids.
Fig. 2.
: A section of the crystal structure of (I), viewed down the c axis.

Crystal data

C12H10N2O6F(000) = 1152
Mr = 278.22Dx = 1.560 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3450 reflections
a = 24.983 (9) Åθ = 3.0–27.5°
b = 13.485 (5) ŵ = 0.13 mm1
c = 7.312 (3) ÅT = 93 K
β = 105.911 (4)°Prism, yellow
V = 2369.0 (16) Å30.40 × 0.20 × 0.10 mm
Z = 8

Data collection

Rigaku AFC10/Saturn724+ diffractometer2134 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.042
graphiteθmax = 27.6°, θmin = 3.0°
Detector resolution: 28.5714 pixels mm-1h = −28→32
multi–scank = −17→17
9288 measured reflectionsl = −9→6
2714 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0596P)2 + 0.69P] where P = (Fo2 + 2Fc2)/3
2714 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.39296 (5)0.60992 (8)0.12800 (18)0.0219 (3)
O20.45623 (5)0.47578 (9)0.04941 (17)0.0222 (3)
O30.47644 (5)0.28865 (9)0.03118 (18)0.0269 (3)
O40.41766 (5)0.17833 (9)0.07290 (19)0.0292 (3)
O50.13633 (5)0.39925 (8)0.35194 (16)0.0196 (3)
O60.17659 (5)0.25177 (9)0.32497 (17)0.0251 (3)
N10.20946 (6)0.59192 (11)0.2676 (2)0.0237 (3)
N20.43188 (6)0.26508 (11)0.0670 (2)0.0222 (3)
C10.32709 (7)0.48910 (12)0.1768 (2)0.0179 (4)
H10.30330.53910.20230.022*
C20.37531 (7)0.51576 (12)0.1344 (2)0.0174 (4)
C30.41109 (7)0.44238 (13)0.0937 (2)0.0180 (4)
C40.39609 (7)0.34321 (12)0.1026 (2)0.0178 (4)
C50.34721 (7)0.31586 (12)0.1455 (2)0.0189 (4)
H50.33790.24770.14890.023*
C60.31215 (7)0.38778 (12)0.1831 (2)0.0177 (4)
C70.26290 (7)0.35205 (12)0.2309 (2)0.0186 (4)
H70.26010.28190.23520.022*
C80.22018 (7)0.40137 (12)0.2704 (2)0.0182 (4)
C90.17571 (7)0.34244 (12)0.3181 (2)0.0188 (4)
C100.21410 (7)0.50688 (13)0.2690 (2)0.0189 (4)
C110.09158 (7)0.34963 (13)0.4102 (2)0.0216 (4)
H11A0.10720.30130.51290.026*
H11B0.06680.31380.30130.026*
C120.05971 (7)0.42919 (13)0.4796 (3)0.0248 (4)
H12A0.08400.46090.59270.030*
H12B0.02760.39950.51190.030*
H12C0.04670.47890.37950.030*
H2O0.4735 (10)0.4161 (19)0.024 (3)0.055 (7)*
H1O0.3692 (11)0.659 (2)0.139 (3)0.063 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0197 (6)0.0149 (6)0.0348 (7)−0.0012 (5)0.0136 (5)0.0001 (5)
O20.0176 (6)0.0218 (7)0.0314 (7)−0.0007 (5)0.0138 (5)0.0004 (5)
O30.0211 (7)0.0268 (7)0.0379 (7)0.0035 (5)0.0169 (6)0.0005 (6)
O40.0312 (7)0.0163 (6)0.0449 (8)0.0022 (5)0.0184 (6)−0.0011 (5)
O50.0177 (6)0.0184 (6)0.0259 (6)−0.0003 (5)0.0115 (5)0.0015 (5)
O60.0243 (7)0.0172 (6)0.0395 (8)−0.0008 (5)0.0183 (6)0.0000 (5)
N10.0206 (8)0.0207 (8)0.0323 (8)0.0006 (6)0.0117 (6)0.0001 (6)
N20.0214 (8)0.0199 (7)0.0268 (8)0.0047 (6)0.0094 (6)−0.0005 (6)
C10.0162 (8)0.0175 (8)0.0215 (8)0.0014 (6)0.0076 (7)−0.0003 (6)
C20.0180 (9)0.0144 (8)0.0206 (8)0.0010 (6)0.0067 (7)0.0008 (6)
C30.0154 (8)0.0203 (8)0.0195 (8)0.0004 (6)0.0068 (7)0.0000 (6)
C40.0173 (8)0.0164 (8)0.0208 (8)0.0039 (6)0.0069 (7)−0.0003 (6)
C50.0192 (8)0.0176 (8)0.0211 (8)−0.0004 (7)0.0074 (7)−0.0004 (6)
C60.0169 (8)0.0176 (8)0.0198 (8)−0.0014 (6)0.0070 (7)−0.0004 (6)
C70.0204 (9)0.0157 (8)0.0211 (8)−0.0019 (6)0.0081 (7)0.0003 (6)
C80.0188 (8)0.0170 (8)0.0202 (8)−0.0005 (6)0.0076 (7)−0.0003 (6)
C90.0183 (9)0.0193 (8)0.0206 (8)−0.0007 (7)0.0085 (7)−0.0013 (7)
C100.0146 (8)0.0216 (9)0.0223 (8)−0.0013 (7)0.0082 (7)−0.0005 (7)
C110.0194 (9)0.0221 (9)0.0274 (9)−0.0044 (7)0.0133 (7)−0.0010 (7)
C120.0224 (10)0.0227 (9)0.0346 (10)−0.0005 (7)0.0167 (8)−0.0016 (7)

Geometric parameters (Å, °)

O1—C21.3491 (19)C3—C41.395 (2)
O1—H1O0.90 (3)C4—C51.391 (2)
O2—C31.334 (2)C5—C61.384 (2)
O2—H2O0.95 (3)C5—H50.9500
O3—N21.2528 (19)C6—C71.450 (2)
O4—N21.2266 (19)C7—C81.354 (2)
O5—C91.322 (2)C7—H70.9500
O5—C111.463 (2)C8—C101.431 (2)
O6—C91.224 (2)C8—C91.484 (2)
N1—C101.152 (2)C11—C121.505 (2)
N2—C41.451 (2)C11—H11A0.9900
C1—C21.372 (2)C11—H11B0.9900
C1—C61.420 (2)C12—H12A0.9800
C1—H10.9500C12—H12B0.9800
C2—C31.419 (2)C12—H12C0.9800
C2—O1—H1O117.0 (17)C1—C6—C7125.12 (15)
C3—O2—H2O102.7 (15)C8—C7—C6131.17 (16)
C9—O5—C11117.16 (13)C8—C7—H7114.4
O4—N2—O3122.12 (14)C6—C7—H7114.4
O4—N2—C4119.20 (15)C7—C8—C10125.13 (15)
O3—N2—C4118.68 (14)C7—C8—C9118.16 (16)
C2—C1—C6120.95 (15)C10—C8—C9116.71 (15)
C2—C1—H1119.5O6—C9—O5125.26 (15)
C6—C1—H1119.5O6—C9—C8122.58 (15)
O1—C2—C1124.76 (15)O5—C9—C8112.16 (15)
O1—C2—C3114.74 (15)N1—C10—C8179.64 (18)
C1—C2—C3120.49 (15)O5—C11—C12106.83 (14)
O2—C3—C4126.20 (15)O5—C11—H11A110.4
O2—C3—C2116.01 (15)C12—C11—H11A110.4
C4—C3—C2117.79 (15)O5—C11—H11B110.4
C5—C4—C3121.88 (15)C12—C11—H11B110.4
C5—C4—N2118.04 (15)H11A—C11—H11B108.6
C3—C4—N2120.08 (15)C11—C12—H12A109.5
C6—C5—C4120.10 (15)C11—C12—H12B109.5
C6—C5—H5119.9H12A—C12—H12B109.5
C4—C5—H5119.9C11—C12—H12C109.5
C5—C6—C1118.76 (15)H12A—C12—H12C109.5
C5—C6—C7116.10 (15)H12B—C12—H12C109.5
C6—C1—C2—O1−179.03 (15)C4—C5—C6—C10.1 (2)
C6—C1—C2—C30.7 (2)C4—C5—C6—C7−178.53 (15)
O1—C2—C3—O2−1.9 (2)C2—C1—C6—C50.0 (2)
C1—C2—C3—O2178.35 (14)C2—C1—C6—C7178.44 (15)
O1—C2—C3—C4178.37 (14)C5—C6—C7—C8−178.25 (17)
C1—C2—C3—C4−1.4 (2)C1—C6—C7—C83.3 (3)
O2—C3—C4—C5−178.26 (15)C6—C7—C8—C101.4 (3)
C2—C3—C4—C51.4 (2)C6—C7—C8—C9−178.89 (16)
O2—C3—C4—N21.8 (3)C11—O5—C9—O62.8 (2)
C2—C3—C4—N2−178.46 (14)C11—O5—C9—C8−176.96 (13)
O4—N2—C4—C51.1 (2)C7—C8—C9—O60.8 (3)
O3—N2—C4—C5−178.91 (14)C10—C8—C9—O6−179.52 (16)
O4—N2—C4—C3−179.01 (15)C7—C8—C9—O5−179.44 (14)
O3—N2—C4—C31.0 (2)C10—C8—C9—O50.3 (2)
C3—C4—C5—C6−0.8 (2)C9—O5—C11—C12168.12 (14)
N2—C4—C5—C6179.10 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···O6i0.91 (3)1.76 (3)2.6692 (18)176 (2)
C5—H5···N1ii0.952.573.467 (3)159
O2—H2O···O30.96 (3)1.72 (3)2.584 (2)149 (2)
C1—H1···N10.952.623.474 (3)150

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2196).

References

  • Bäckström, R., Honkanen, E., Pippuri, A., Kairisalo, P., Pystynen, J., Heinola, K., Nissinen, E., Linden, I.-B., Männistö, P. T., Kaakkola, S. & Pohto, P. (1989). J. Med. Chem.32, 841–846. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Rigaku/MSC (2008). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tervo, A. J., Nyrönen, T. H., Rönkkö, T. & Poso, A. (2003). J. Comput. Aid. Mol. Des.17, 797–810. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.
  • Zheng, X.-M., Hu, W.-X. & Xu, F. (2007). Acta Cryst. E63, o1317–o1318.
  • Zhou, W., Li, H.-B., Xia, C.-N., Zheng, X.-M. & Hu, W.-X. (2009). Bioorg. Med. Chem. Lett.19, 1861-1865. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography