PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1177.
Published online 2009 September 5. doi:  10.1107/S1600536809035181
PMCID: PMC2970381

(2-Amino-4,6-dimethyl­pyrimidine-κN 1)(2-amino-4-methyl­pyrimidine-κN 1)silver(I) nitrate

Abstract

Colourless crystals of the title compound, [Ag(C5H7N3)(C6H9N3)]NO3, separated out of a solution of 2-amino-4-methyl­pyrimidine, 2-amino-4,6-dimethyl­pyrimidine and silver nitrate in water and methanol. The central AgI ion is coordinated by two different N atoms in the aromatic rings of the ligands, with an N—Ag—N angle of 173.9 (2)°. The crystal structure is composed of two complexed cations and stabilized by an inter­molecular N—H(...)O and N—H(...)N hydrogen-bond network and there is π–π stacking of the aromatic rings [inter­planar distance 3.651 (10) Å].

Related literature

For N—Ag—N coordination geometries, see: Greenwood & Earnshaw (1997 [triangle]). For π–π stacking, see: Munakata et al. (2000 [triangle]). For silver coordination networks, see: Seward et al. (2004 [triangle]); Shimizu et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1177-scheme1.jpg

Experimental

Crystal data

  • [Ag(C5H7N3)(C6H9N3)]NO3
  • M r = 402.18
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1177-efi1.jpg
  • a = 7.5689 (4) Å
  • b = 19.1582 (7) Å
  • c = 20.1826 (10) Å
  • V = 2926.6 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.40 mm−1
  • T = 120 K
  • 0.50 × 0.40 × 0.35 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.512, T max = 0.616
  • 11376 measured reflections
  • 3244 independent reflections
  • 2647 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.129
  • S = 1.10
  • 3244 reflections
  • 403 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.95 e Å−3
  • Δρmin = −0.63 e Å−3
  • Absolute structure: Flack (1983 [triangle]), Friedel pairs merged
  • Flack parameter: 0.07 (6)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035181/jh2100sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035181/jh2100Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the Natural Science Foundation of Heilongjiang Province for financial support.

supplementary crystallographic information

Comment

The nitrogen-containing bidentates, heterocyclic pyrimidine compounds are of great interests with capabilities to form stable hydrogen bonding network between aminos and nitrogen atoms of hetero rings. The crystal structure of the title compound (I) comprised of balanced NO3- anions and [Ag(2-amino-4-methylpyrimidine)(2-amino-4,6-dimethylpyrimidine)]+ cations. The central silver ion, coordinated to two nitrogen atoms from the pyrimidine rings of those two different ligands, giving linear N—Ag—N coordination geometries (Greenwood et al., 1997). The whole crystal structure was stabilized by multiple intermolecular N–H–N hydrogen bonding network and pi-pi stacking with the interplane distance of 3.65 Å (Munakata et al., 2000).

Experimental

A solution of 108 mg (1 mmol) 2-amino-4-methylpyrimidine and 123 mg (1 mmol) of 2-amino-4,6-dimethylpyrimidine in water-CH3OH (1:1 V/V,10 ml) was added to an aqueous solution of AgNO3 170 mg (1 mmol) in 3 ml water with stirring at 333 K. A small amount of white precipitate was removed from the resulting solution. Prism shaped colorless crystals were obtained by slow evaporation of the solvent at room temperature over a period of 3 days.

Refinement

All H atoms were placed in calculated positions and refined as riding, with C–H = 0.96–0.98 Å, and N–H = 0.88 Å, and Uiso(H) = 1.2 or 1.5Ueq(C,N).

Figures

Fig. 1.
The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing diagram of molecules, viewed down the b axis, with the weak interactions shown as dashed lines.

Crystal data

[Ag(C5H7N3)(C6H9N3)]NO3F(000) = 1616
Mr = 402.18Dx = 1.826 Mg m3
Orthorhombic, Pbc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2bCell parameters from 3244 reflections
a = 7.5689 (4) Åθ = 2.9–27.0°
b = 19.1582 (7) ŵ = 1.40 mm1
c = 20.1826 (10) ÅT = 120 K
V = 2926.6 (2) Å3Prism, colourless
Z = 80.50 × 0.40 × 0.35 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3244 independent reflections
Radiation source: fine-focus sealed tube2647 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→9
Tmin = 0.512, Tmax = 0.616k = −24→23
11376 measured reflectionsl = −17→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.129w = 1/[σ2(Fo2) + (0.0822P)2 + 2.1516P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.010
3244 reflectionsΔρmax = 0.95 e Å3
403 parametersΔρmin = −0.63 e Å3
1 restraintAbsolute structure: Flack (1983), 0 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.07 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.71751 (9)0.60684 (3)0.47181 (3)0.0436 (2)
Ag20.21246 (9)0.64903 (3)0.49169 (4)0.0463 (2)
C10.7635 (13)0.5144 (5)0.3524 (6)0.045 (2)
H1A0.81440.55610.33560.054*
C20.7561 (14)0.4570 (5)0.3120 (6)0.046 (2)
H2A0.79930.45850.26780.055*
C30.6815 (11)0.3954 (5)0.3386 (5)0.040 (2)
C40.6715 (17)0.3304 (6)0.2971 (6)0.058 (3)
H4A0.65870.28960.32610.087*
H4B0.77980.32580.27090.087*
H4C0.56940.33330.26740.087*
C50.6273 (11)0.4538 (4)0.4376 (5)0.0337 (19)
C60.6599 (11)0.8125 (4)0.6122 (5)0.0352 (17)
C70.6426 (15)0.8776 (5)0.6539 (6)0.053 (2)
H7A0.53470.90260.64150.080*
H7B0.74530.90780.64660.080*
H7C0.63660.86460.70080.080*
C80.7394 (12)0.7544 (5)0.6393 (5)0.0381 (19)
H8A0.77760.75340.68410.046*
C90.7610 (12)0.6963 (5)0.5967 (5)0.0373 (19)
C100.8413 (15)0.6312 (6)0.6203 (7)0.058 (3)
H10A0.91420.61100.58500.087*
H10B0.74810.59810.63250.087*
H10C0.91530.64090.65900.087*
C110.6221 (11)0.7588 (4)0.5118 (4)0.0349 (18)
C120.2777 (12)0.5562 (5)0.3701 (5)0.0367 (19)
C130.3473 (17)0.6232 (6)0.3442 (7)0.061 (3)
H13A0.43420.64220.37540.091*
H13B0.25000.65650.33900.091*
H13C0.40390.61530.30120.091*
C140.2742 (12)0.4978 (6)0.3302 (5)0.041 (2)
H14A0.32110.49780.28660.050*
C150.1979 (10)0.4393 (5)0.3581 (5)0.0377 (19)
C160.1861 (17)0.3734 (6)0.3177 (6)0.060 (3)
H16A0.20050.33280.34690.090*
H16B0.27970.37330.28410.090*
H16C0.07060.37110.29590.090*
C170.1461 (11)0.4950 (4)0.4551 (4)0.0317 (17)
C180.1404 (11)0.8570 (4)0.6286 (4)0.0330 (16)
C190.1264 (14)0.9230 (5)0.6686 (6)0.055 (3)
H19A0.00810.94300.66310.082*
H19B0.21500.95660.65310.082*
H19C0.14680.91250.71540.082*
C200.2179 (12)0.7976 (5)0.6557 (5)0.042 (2)
H20A0.25820.79600.70020.050*
C210.2322 (12)0.7409 (5)0.6130 (6)0.039 (2)
H21A0.28620.69960.62940.046*
C220.0990 (11)0.8014 (5)0.5295 (4)0.0325 (18)
N10.7026 (8)0.5141 (4)0.4139 (4)0.0329 (15)
N20.5607 (11)0.4498 (4)0.4978 (4)0.0439 (18)
H2B0.56370.48650.52410.053*
H2C0.51330.41050.51170.053*
N30.6194 (9)0.3939 (3)0.3996 (4)0.0372 (16)
N40.7038 (9)0.6994 (3)0.5340 (4)0.0303 (15)
N50.5602 (11)0.7605 (4)0.4515 (4)0.0441 (19)
H5A0.50640.79820.43690.053*
H5B0.57220.72400.42550.053*
N60.6023 (9)0.8151 (3)0.5505 (4)0.0353 (15)
N70.2130 (9)0.5570 (4)0.4326 (4)0.0378 (18)
N80.0846 (11)0.4947 (4)0.5176 (4)0.0446 (19)
H8B0.08880.53310.54160.054*
H8C0.04020.45620.53450.054*
N90.1322 (10)0.4362 (3)0.4176 (4)0.0351 (15)
N100.1754 (9)0.7407 (3)0.5510 (4)0.0351 (16)
N110.0341 (10)0.8033 (3)0.4697 (4)0.0407 (16)
H11A−0.01890.84130.45530.049*
H11B0.04340.76660.44370.049*
N120.0822 (9)0.8582 (3)0.5674 (4)0.0349 (15)
N130.1299 (12)0.1949 (4)0.3307 (4)0.0475 (19)
N140.3858 (11)0.5590 (4)0.6325 (4)0.0424 (17)
O10.2935 (10)0.1966 (5)0.3249 (6)0.076 (3)
O20.0732 (12)0.1825 (4)0.3870 (4)0.067 (2)
O30.0361 (15)0.2039 (8)0.2829 (6)0.114 (4)
O40.2254 (10)0.5607 (5)0.6432 (4)0.059 (2)
O50.4378 (11)0.5740 (4)0.5762 (4)0.0595 (19)
O60.4910 (11)0.5443 (5)0.6767 (6)0.076 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0552 (4)0.0293 (3)0.0463 (4)0.0003 (2)0.0008 (5)−0.0078 (3)
Ag20.0636 (4)0.0301 (3)0.0451 (4)0.0007 (3)0.0003 (5)−0.0077 (3)
C10.053 (5)0.033 (5)0.048 (6)0.001 (4)0.014 (5)0.006 (5)
C20.059 (6)0.039 (5)0.041 (6)0.005 (4)0.006 (4)−0.003 (4)
C30.036 (4)0.038 (4)0.047 (5)0.006 (3)0.000 (4)−0.004 (4)
C40.073 (7)0.046 (5)0.055 (7)−0.001 (5)0.004 (5)−0.018 (5)
C50.032 (4)0.028 (4)0.041 (5)0.007 (3)−0.006 (4)−0.014 (4)
C60.037 (4)0.038 (4)0.030 (4)−0.002 (4)0.004 (3)−0.009 (3)
C70.056 (5)0.051 (5)0.053 (6)−0.001 (5)−0.008 (5)−0.022 (5)
C80.044 (4)0.032 (4)0.038 (5)0.003 (4)−0.002 (4)−0.002 (4)
C90.040 (4)0.036 (5)0.036 (5)−0.005 (4)0.011 (4)0.001 (4)
C100.058 (6)0.064 (6)0.053 (7)−0.001 (5)0.003 (5)−0.007 (6)
C110.047 (5)0.028 (4)0.029 (4)−0.011 (3)0.010 (4)−0.006 (3)
C120.047 (5)0.038 (5)0.025 (4)0.000 (4)0.001 (4)0.003 (4)
C130.070 (7)0.054 (6)0.058 (8)−0.011 (6)−0.001 (6)0.018 (6)
C140.041 (4)0.055 (6)0.028 (5)0.012 (4)−0.013 (4)−0.005 (4)
C150.037 (4)0.038 (4)0.038 (5)0.007 (3)−0.003 (4)−0.008 (4)
C160.082 (8)0.047 (5)0.052 (7)0.003 (5)−0.004 (6)−0.014 (5)
C170.037 (4)0.033 (4)0.025 (4)−0.002 (3)−0.010 (3)0.001 (3)
C180.041 (4)0.026 (4)0.032 (4)−0.004 (3)0.002 (3)−0.008 (3)
C190.060 (6)0.043 (5)0.060 (7)0.002 (4)−0.017 (5)−0.015 (5)
C200.056 (5)0.041 (5)0.029 (4)−0.011 (4)−0.003 (4)−0.004 (4)
C210.048 (5)0.035 (4)0.033 (5)−0.001 (4)0.003 (4)0.002 (4)
C220.033 (4)0.033 (4)0.031 (5)−0.011 (3)0.010 (3)0.002 (3)
N10.030 (3)0.026 (3)0.043 (4)0.007 (2)−0.001 (3)0.002 (3)
N20.056 (4)0.036 (3)0.040 (4)−0.004 (3)0.004 (4)−0.013 (4)
N30.042 (4)0.027 (3)0.042 (4)0.002 (3)−0.002 (3)−0.012 (3)
N40.041 (4)0.018 (3)0.031 (4)−0.002 (2)0.005 (3)−0.005 (3)
N50.065 (5)0.037 (4)0.031 (4)0.008 (4)0.000 (4)−0.006 (3)
N60.039 (3)0.027 (3)0.040 (4)0.004 (3)0.001 (3)−0.006 (3)
N70.034 (3)0.040 (4)0.040 (5)0.004 (3)−0.006 (3)0.015 (3)
N80.062 (5)0.035 (4)0.036 (4)−0.008 (3)0.008 (4)−0.007 (3)
N90.051 (4)0.027 (3)0.027 (4)0.008 (3)−0.008 (3)−0.003 (3)
N100.042 (4)0.021 (3)0.043 (4)−0.001 (3)0.001 (3)0.001 (3)
N110.056 (4)0.030 (3)0.036 (4)0.008 (3)−0.004 (4)−0.001 (3)
N120.031 (3)0.031 (3)0.043 (4)−0.002 (3)−0.002 (3)−0.001 (3)
N130.064 (5)0.046 (4)0.033 (4)−0.001 (4)−0.008 (4)−0.004 (3)
N140.057 (5)0.042 (4)0.028 (4)0.002 (3)−0.001 (3)−0.006 (3)
O10.056 (5)0.078 (6)0.092 (8)0.006 (4)−0.004 (5)−0.023 (6)
O20.081 (5)0.061 (5)0.058 (5)0.012 (4)−0.002 (4)−0.007 (4)
O30.089 (6)0.190 (12)0.061 (7)−0.021 (8)−0.027 (6)0.035 (8)
O40.057 (4)0.082 (6)0.037 (4)0.009 (4)−0.005 (3)−0.014 (4)
O50.080 (5)0.056 (4)0.042 (4)−0.003 (4)0.014 (4)−0.002 (3)
O60.064 (5)0.088 (6)0.074 (7)0.010 (4)−0.007 (5)0.018 (5)

Geometric parameters (Å, °)

Ag1—N12.130 (8)C13—H13C0.9800
Ag1—N42.176 (6)C14—C151.380 (15)
Ag2—N102.145 (7)C14—H14A0.9500
Ag2—N72.129 (9)C15—N91.302 (12)
C1—N11.324 (14)C15—C161.506 (14)
C1—C21.371 (16)C16—H16A0.9800
C1—H1A0.9500C16—H16B0.9800
C2—C31.415 (14)C16—H16C0.9800
C2—H2A0.9500C17—N81.345 (11)
C3—N31.316 (13)C17—N71.368 (11)
C3—C41.503 (14)C17—N91.361 (11)
C4—H4A0.9800C18—N121.313 (11)
C4—H4B0.9800C18—C201.391 (13)
C4—H4C0.9800C18—C191.503 (12)
C5—N21.317 (13)C19—H19A0.9800
C5—N11.374 (12)C19—H19B0.9800
C5—N31.382 (11)C19—H19C0.9800
C6—N61.320 (12)C20—C211.391 (14)
C6—C81.378 (13)C20—H20A0.9500
C6—C71.511 (13)C21—N101.322 (14)
C7—H7A0.9800C21—H21A0.9500
C7—H7B0.9800C22—N111.304 (12)
C7—H7C0.9800C22—N121.336 (11)
C8—C91.416 (14)C22—N101.369 (11)
C8—H8A0.9500N2—H2B0.8800
C9—N41.338 (14)N2—H2C0.8800
C9—C101.467 (15)N5—H5A0.8800
C10—H10A0.9800N5—H5B0.8800
C10—H10B0.9800N8—H8B0.8800
C10—H10C0.9800N8—H8C0.8800
C11—N51.304 (11)N11—H11A0.8800
C11—N61.340 (11)N11—H11B0.8800
C11—N41.370 (11)N13—O31.210 (13)
C12—N71.353 (13)N13—O11.244 (12)
C12—C141.379 (14)N13—O21.238 (12)
C12—C131.482 (13)N14—O51.237 (11)
C13—H13A0.9800N14—O41.233 (11)
C13—H13B0.9800N14—O61.229 (12)
N1—Ag1—N4173.9 (2)C15—C16—H16B109.5
N10—Ag2—N7172.6 (3)H16A—C16—H16B109.5
N1—C1—C2122.7 (10)C15—C16—H16C109.5
N1—C1—H1A118.6H16A—C16—H16C109.5
C2—C1—H1A118.6H16B—C16—H16C109.5
C1—C2—C3117.3 (10)N8—C17—N7116.4 (8)
C1—C2—H2A121.4N8—C17—N9119.4 (8)
C3—C2—H2A121.4N7—C17—N9124.2 (8)
N3—C3—C2121.1 (9)N12—C18—C20121.7 (8)
N3—C3—C4119.0 (9)N12—C18—C19117.8 (8)
C2—C3—C4119.9 (10)C20—C18—C19120.5 (8)
C3—C4—H4A109.5C18—C19—H19A109.5
C3—C4—H4B109.5C18—C19—H19B109.5
H4A—C4—H4B109.5H19A—C19—H19B109.5
C3—C4—H4C109.5C18—C19—H19C109.5
H4A—C4—H4C109.5H19A—C19—H19C109.5
H4B—C4—H4C109.5H19B—C19—H19C109.5
N2—C5—N1121.9 (8)C21—C20—C18115.4 (9)
N2—C5—N3116.6 (8)C21—C20—H20A122.3
N1—C5—N3121.5 (8)C18—C20—H20A122.3
N6—C6—C8123.3 (9)C20—C21—N10124.2 (9)
N6—C6—C7117.8 (8)C20—C21—H21A117.9
C8—C6—C7118.9 (9)N10—C21—H21A117.9
C6—C7—H7A109.5N11—C22—N12118.1 (8)
C6—C7—H7B109.5N11—C22—N10118.5 (8)
H7A—C7—H7B109.5N12—C22—N10123.4 (8)
C6—C7—H7C109.5C1—N1—C5118.3 (8)
H7A—C7—H7C109.5C1—N1—Ag1119.5 (7)
H7B—C7—H7C109.5C5—N1—Ag1122.2 (6)
C6—C8—C9116.4 (9)C5—N2—H2B120.0
C6—C8—H8A121.8C5—N2—H2C120.0
C9—C8—H8A121.8H2B—N2—H2C120.0
N4—C9—C8120.0 (9)C3—N3—C5119.0 (8)
N4—C9—C10118.6 (9)C9—N4—C11119.6 (7)
C8—C9—C10121.3 (10)C9—N4—Ag1119.5 (6)
C9—C10—H10A109.5C11—N4—Ag1120.6 (6)
C9—C10—H10B109.5C11—N5—H5A120.0
H10A—C10—H10B109.5C11—N5—H5B120.0
C9—C10—H10C109.5H5A—N5—H5B120.0
H10A—C10—H10C109.5C6—N6—C11118.9 (8)
H10B—C10—H10C109.5C12—N7—C17115.8 (8)
N5—C11—N6118.9 (9)C12—N7—Ag2122.1 (6)
N5—C11—N4119.3 (8)C17—N7—Ag2122.1 (6)
N6—C11—N4121.8 (8)C17—N8—H8B120.0
N7—C12—C14123.0 (9)C17—N8—H8C120.0
N7—C12—C13116.6 (9)H8B—N8—H8C120.0
C14—C12—C13120.3 (10)C15—N9—C17116.5 (8)
C12—C13—H13A109.5C21—N10—C22115.8 (8)
C12—C13—H13B109.5C21—N10—Ag2119.2 (6)
H13A—C13—H13B109.5C22—N10—Ag2125.0 (6)
C12—C13—H13C109.5C22—N11—H11A120.0
H13A—C13—H13C109.5C22—N11—H11B120.0
H13B—C13—H13C109.5H11A—N11—H11B120.0
C15—C14—C12115.5 (9)C22—N12—C18119.5 (7)
C15—C14—H14A122.3O3—N13—O1120.4 (11)
C12—C14—H14A122.3O3—N13—O2123.8 (10)
N9—C15—C14124.9 (9)O1—N13—O2115.8 (10)
N9—C15—C16116.0 (9)O5—N14—O4117.9 (8)
C14—C15—C16119.1 (9)O5—N14—O6120.9 (9)
C15—C16—H16A109.5O4—N14—O6121.1 (9)
N1—C1—C2—C3−0.8 (16)N6—C11—N4—Ag1175.8 (6)
C1—C2—C3—N31.0 (15)N1—Ag1—N4—C995 (3)
C1—C2—C3—C4−179.2 (10)N1—Ag1—N4—C11−79 (3)
N6—C6—C8—C91.4 (13)C8—C6—N6—C11−0.4 (13)
C7—C6—C8—C9−176.5 (8)C7—C6—N6—C11177.6 (8)
C6—C8—C9—N4−0.7 (13)N5—C11—N6—C6177.8 (8)
C6—C8—C9—C10−179.0 (9)N4—C11—N6—C6−1.4 (12)
N7—C12—C14—C150.6 (13)C14—C12—N7—C171.5 (12)
C13—C12—C14—C15−176.6 (9)C13—C12—N7—C17178.8 (9)
C12—C14—C15—N9−0.2 (13)C14—C12—N7—Ag2−177.9 (7)
C12—C14—C15—C16179.2 (8)C13—C12—N7—Ag2−0.6 (11)
N12—C18—C20—C211.3 (13)N8—C17—N7—C12178.7 (8)
C19—C18—C20—C21−176.7 (9)N9—C17—N7—C12−4.2 (12)
C18—C20—C21—N10−1.1 (14)N8—C17—N7—Ag2−2.0 (10)
C2—C1—N1—C5−0.7 (14)N9—C17—N7—Ag2175.2 (6)
C2—C1—N1—Ag1−179.1 (8)N10—Ag2—N7—C12117 (2)
N2—C5—N1—C1−178.7 (9)N10—Ag2—N7—C17−63 (3)
N3—C5—N1—C12.0 (12)C14—C15—N9—C17−2.2 (12)
N2—C5—N1—Ag1−0.4 (11)C16—C15—N9—C17178.4 (8)
N3—C5—N1—Ag1−179.7 (6)N8—C17—N9—C15−178.4 (8)
N4—Ag1—N1—C1134 (3)N7—C17—N9—C154.5 (12)
N4—Ag1—N1—C5−44 (3)C20—C21—N10—C220.2 (13)
C2—C3—N3—C50.2 (13)C20—C21—N10—Ag2178.9 (7)
C4—C3—N3—C5−179.5 (9)N11—C22—N10—C21−177.3 (8)
N2—C5—N3—C3178.9 (8)N12—C22—N10—C210.5 (12)
N1—C5—N3—C3−1.8 (12)N11—C22—N10—Ag24.1 (10)
C8—C9—N4—C11−0.9 (12)N12—C22—N10—Ag2−178.2 (5)
C10—C9—N4—C11177.5 (8)N7—Ag2—N10—C21115 (2)
C8—C9—N4—Ag1−174.8 (6)N7—Ag2—N10—C22−66 (3)
C10—C9—N4—Ag13.6 (11)N11—C22—N12—C18177.5 (8)
N5—C11—N4—C9−177.2 (8)N10—C22—N12—C18−0.2 (12)
N6—C11—N4—C92.0 (12)C20—C18—N12—C22−0.7 (12)
N5—C11—N4—Ag1−3.4 (11)C19—C18—N12—C22177.3 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···O50.882.203.004 (10)152
N2—H2C···N6i0.882.173.053 (11)178
N5—H5A···N3ii0.882.203.078 (11)178
N5—H5B···O1ii0.882.333.042 (13)138
N8—H8B···O40.882.363.026 (12)133
N8—H8C···N12iii0.882.203.073 (11)175
N11—H11A···N9iv0.882.153.029 (10)176
N11—H11B···O2iv0.882.162.965 (11)151

Symmetry codes: (i) −x+1, y−1/2, z; (ii) −x+1, y+1/2, z; (iii) −x, y−1/2, z; (iv) −x, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2100).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Greenwood, N. N. & Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. Oxford: Pergamon Press.
  • Munakata, M., Wu, L. P. & Ning, G. L. (2000). Coord. Chem. Rev 198, 171–203.
  • Seward, C., Jia, W. L., Wang, R. Y., Enright, G. D. & Wang, S. (2004). Angew. Chem. Int. Ed. Engl.43, 2933–2936. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485–1486.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography