PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2334.
Published online 2009 September 5. doi:  10.1107/S1600536809034801
PMCID: PMC2970379

N-(3,5-Dichloro­phen­yl)-4-methyl­benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C13H11Cl2NO2S, the conformation of the N—C bond in the C—SO2—NH—C segment is gauche with respect to the SO bonds. The two benzene rings are tilted by 79.6 (1)° relative to each other. In the crystal, inversion dimers linked by pairs of N—H(...)O hydrogen bonds occur.

Related literature

For the preparation of the title compound, see: Shetty & Gowda (2005 [triangle]). For background literature, see: For a study of the effect of substituents on the crystal structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2008 [triangle], 2009a [triangle],b [triangle]). For bond parameters in related aryl sulfonamides, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2334-scheme1.jpg

Experimental

Crystal data

  • C13H11Cl2NO2S
  • M r = 316.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2334-efi1.jpg
  • a = 6.7388 (8) Å
  • b = 8.9627 (8) Å
  • c = 22.944 (2) Å
  • β = 91.801 (8)°
  • V = 1385.1 (2) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 5.61 mm−1
  • T = 299 K
  • 0.42 × 0.35 × 0.13 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.140, T max = 0.482
  • 3363 measured reflections
  • 2424 independent reflections
  • 2049 reflections with I > 2σ(I)
  • R int = 0.104
  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.236
  • S = 1.11
  • 2424 reflections
  • 176 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809034801/bv2124sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034801/bv2124Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; 2009a, b), in the present work, the crystal structure of 4-methyl-N-(3,5-dichlorophenyl)benzenesulfonamide (I) has been determined. The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has "trans" and "gauche" torsions with respect to the SO bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 69.3 (4)° compared to the values of -51.6 (3)° and 68.3 (2)°, respectively, for 4-methyl-N-(phenyl)benzenesulfonamide (II)(Gowda et al., 2009b) and N-(3,5-dichlorophenyl)-benzenesulfonamide (III) (Gowda et al., 2008). The two benzene rings in (I) are tilted relative to each other by 79.6 (1)°, compared to the values of 68.4 (1)° for the compound II and 57.0 (1)° for III.

The other bond parameters in (I) are similar to those observed in (II) (Gowda et al., 2009b), (III) (Gowda et al., 2008), 4-methyl-N-(3,4-dimethylphenyl)benzenesulfonamide (Gowda et al., 2009a) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The packing of molecules via N—H···O(S) hydrogen bonds (Table 1) into supramolecular structure is shown in Fig. 2.

Experimental

The solution of toluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant 4-methyl-N-(3,5-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its position refined [N—H = 0.87 (5) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Two reflections (-5 1 9 and -3 2 11) were omitted from the refinement as a statistical analysis showed that they were anomalous.

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C13H11Cl2NO2SF(000) = 648
Mr = 316.19Dx = 1.516 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.7388 (8) Åθ = 3.9–18.2°
b = 8.9627 (8) ŵ = 5.61 mm1
c = 22.944 (2) ÅT = 299 K
β = 91.801 (8)°Prism, colourless
V = 1385.1 (2) Å30.42 × 0.35 × 0.13 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer2049 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.104
graphiteθmax = 66.9°, θmin = 3.9°
ω/2θ scansh = −7→2
Absorption correction: ψ scan (North et al., 1968)k = −10→0
Tmin = 0.140, Tmax = 0.482l = −27→27
3363 measured reflections3 standard reflections every 120 min
2424 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.1586P)2 + 1.125P] where P = (Fo2 + 2Fc2)/3
2424 reflections(Δ/σ)max = 0.011
176 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6639 (6)0.0125 (4)0.60350 (17)0.0403 (9)
C20.4841 (6)0.0772 (5)0.61451 (17)0.0442 (9)
H20.42150.13940.58720.053*
C30.3986 (6)0.0473 (5)0.66742 (18)0.0441 (9)
C40.4832 (7)−0.0443 (5)0.70890 (18)0.0470 (10)
H40.4223−0.06360.74390.056*
C50.6627 (7)−0.1064 (5)0.69595 (19)0.0496 (10)
C60.7556 (7)−0.0807 (5)0.64425 (18)0.0454 (9)
H60.8771−0.12490.63690.054*
C70.9133 (6)0.3137 (4)0.54905 (17)0.0393 (9)
C81.1092 (6)0.3369 (5)0.53436 (18)0.0430 (9)
H81.16300.28450.50360.052*
C91.2229 (7)0.4380 (5)0.56558 (19)0.0495 (10)
H91.35440.45320.55600.059*
C101.1436 (8)0.5185 (5)0.6117 (2)0.0522 (11)
C110.9505 (8)0.4940 (6)0.62479 (19)0.0547 (11)
H110.89650.54660.65540.066*
C120.8329 (7)0.3936 (5)0.59400 (18)0.0476 (10)
H120.70100.37990.60340.057*
C131.2739 (10)0.6246 (7)0.6464 (2)0.0714 (15)
H13A1.29020.71520.62480.086*
H13B1.40140.57950.65400.086*
H13C1.21330.64680.68270.086*
N10.7620 (6)0.0309 (4)0.55009 (16)0.0467 (9)
H1N0.872 (8)−0.020 (6)0.549 (2)0.056*
O10.8754 (5)0.1373 (3)0.46032 (12)0.0478 (8)
O20.5716 (4)0.2390 (4)0.50360 (13)0.0490 (7)
Cl10.17240 (18)0.13146 (17)0.68157 (5)0.0653 (5)
Cl20.7786 (3)−0.22328 (19)0.74746 (6)0.0826 (6)
S10.76828 (14)0.18214 (11)0.51047 (4)0.0392 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.049 (2)0.0334 (18)0.039 (2)−0.0094 (16)0.0126 (16)−0.0055 (15)
C20.051 (2)0.042 (2)0.040 (2)−0.0025 (17)0.0062 (17)0.0030 (17)
C30.044 (2)0.045 (2)0.044 (2)0.0012 (16)0.0111 (17)−0.0025 (18)
C40.061 (3)0.042 (2)0.038 (2)−0.0064 (18)0.0116 (18)−0.0019 (17)
C50.067 (3)0.039 (2)0.044 (2)0.0051 (19)0.0065 (19)0.0027 (18)
C60.053 (2)0.041 (2)0.043 (2)0.0065 (17)0.0083 (17)−0.0036 (17)
C70.046 (2)0.039 (2)0.0330 (18)0.0042 (16)0.0065 (15)0.0040 (15)
C80.048 (2)0.041 (2)0.040 (2)0.0033 (17)0.0104 (17)0.0008 (17)
C90.052 (3)0.047 (2)0.049 (2)−0.0016 (18)0.0036 (19)0.0065 (19)
C100.072 (3)0.040 (2)0.045 (2)−0.001 (2)−0.003 (2)0.0070 (19)
C110.078 (3)0.050 (2)0.037 (2)0.006 (2)0.008 (2)−0.0056 (18)
C120.055 (3)0.046 (2)0.042 (2)0.0047 (18)0.0138 (18)−0.0040 (18)
C130.089 (4)0.068 (3)0.056 (3)−0.008 (3)−0.014 (3)−0.004 (3)
N10.055 (2)0.0387 (18)0.047 (2)0.0038 (15)0.0219 (17)0.0029 (15)
O10.0598 (18)0.0507 (17)0.0337 (14)0.0098 (13)0.0148 (12)−0.0022 (12)
O20.0481 (17)0.0543 (18)0.0446 (16)0.0038 (13)0.0051 (12)0.0002 (14)
Cl10.0525 (7)0.0842 (9)0.0604 (7)0.0132 (6)0.0205 (5)0.0067 (6)
Cl20.1076 (12)0.0872 (10)0.0542 (8)0.0448 (9)0.0193 (7)0.0235 (7)
S10.0456 (6)0.0388 (6)0.0338 (6)0.0031 (4)0.0110 (4)−0.0010 (4)

Geometric parameters (Å, °)

C1—C21.374 (6)C8—H80.9300
C1—C61.384 (6)C9—C101.399 (7)
C1—N11.420 (5)C9—H90.9300
C2—C31.387 (5)C10—C111.362 (7)
C2—H20.9300C10—C131.506 (7)
C3—C41.368 (6)C11—C121.379 (7)
C3—Cl11.740 (4)C11—H110.9300
C4—C51.373 (6)C12—H120.9300
C4—H40.9300C13—H13A0.9600
C5—C61.378 (6)C13—H13B0.9600
C5—Cl21.746 (5)C13—H13C0.9600
C6—H60.9300N1—S11.633 (4)
C7—C121.380 (6)N1—H1N0.87 (5)
C7—C81.389 (6)O1—S11.435 (3)
C7—S11.753 (4)O2—S11.424 (3)
C8—C91.374 (6)
C2—C1—C6120.5 (4)C10—C9—H9119.5
C2—C1—N1123.1 (4)C11—C10—C9118.3 (4)
C6—C1—N1116.3 (4)C11—C10—C13122.0 (5)
C1—C2—C3118.2 (4)C9—C10—C13119.7 (5)
C1—C2—H2120.9C10—C11—C12121.9 (4)
C3—C2—H2120.9C10—C11—H11119.0
C4—C3—C2123.3 (4)C12—C11—H11119.0
C4—C3—Cl1118.6 (3)C11—C12—C7119.3 (4)
C2—C3—Cl1118.1 (3)C11—C12—H12120.4
C3—C4—C5116.3 (4)C7—C12—H12120.4
C3—C4—H4121.8C10—C13—H13A109.5
C5—C4—H4121.8C10—C13—H13B109.5
C4—C5—C6123.1 (4)H13A—C13—H13B109.5
C4—C5—Cl2118.4 (3)C10—C13—H13C109.5
C6—C5—Cl2118.5 (3)H13A—C13—H13C109.5
C5—C6—C1118.5 (4)H13B—C13—H13C109.5
C5—C6—H6120.7C1—N1—S1126.7 (3)
C1—C6—H6120.7C1—N1—H1N113 (4)
C12—C7—C8120.1 (4)S1—N1—H1N112 (4)
C12—C7—S1120.0 (3)O2—S1—O1120.10 (18)
C8—C7—S1119.8 (3)O2—S1—N1108.55 (19)
C9—C8—C7119.4 (4)O1—S1—N1103.68 (17)
C9—C8—H8120.3O2—S1—C7108.50 (19)
C7—C8—H8120.3O1—S1—C7107.86 (19)
C8—C9—C10120.9 (4)N1—S1—C7107.5 (2)
C8—C9—H9119.5
C6—C1—C2—C30.3 (6)C9—C10—C11—C12−0.2 (7)
N1—C1—C2—C3177.7 (4)C13—C10—C11—C12−178.1 (5)
C1—C2—C3—C4−0.6 (7)C10—C11—C12—C70.9 (7)
C1—C2—C3—Cl1179.2 (3)C8—C7—C12—C11−1.4 (6)
C2—C3—C4—C50.6 (7)S1—C7—C12—C11178.5 (3)
Cl1—C3—C4—C5−179.1 (3)C2—C1—N1—S137.0 (6)
C3—C4—C5—C6−0.4 (7)C6—C1—N1—S1−145.5 (4)
C3—C4—C5—Cl2179.6 (3)C1—N1—S1—O2−47.9 (4)
C4—C5—C6—C10.2 (7)C1—N1—S1—O1−176.6 (4)
Cl2—C5—C6—C1−179.8 (3)C1—N1—S1—C769.3 (4)
C2—C1—C6—C5−0.2 (6)C12—C7—S1—O237.9 (4)
N1—C1—C6—C5−177.7 (4)C8—C7—S1—O2−142.2 (3)
C12—C7—C8—C91.1 (6)C12—C7—S1—O1169.5 (3)
S1—C7—C8—C9−178.7 (3)C8—C7—S1—O1−10.7 (4)
C7—C8—C9—C10−0.4 (6)C12—C7—S1—N1−79.3 (4)
C8—C9—C10—C110.0 (7)C8—C7—S1—N1100.6 (3)
C8—C9—C10—C13177.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (5)2.02 (6)2.888 (5)176 (5)

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2124).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o877. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o1219. [PMC free article] [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography