PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2586.
Published online 2009 September 30. doi:  10.1107/S1600536809038781
PMCID: PMC2970375

(Z)-3-(3-Phenyl­allyl­idene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione

Abstract

In the title compound, C18H18O4, the 1,3-dioxane ring adopts a distorted envelope conformation with the C atom common to the cyclo­hexane ring forming the flap. In the crystal, inversion dimers linked by pairs of C—H(...)O hydrogen bonds occur.

Related literature

For background information on spiro-compounds, see: Jiang et al. (1998 [triangle]); Lian et al. (2008 [triangle]); Wei et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2586-scheme1.jpg

Experimental

Crystal data

  • C18H18O4
  • M r = 298.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2586-efi1.jpg
  • a = 7.1177 (14) Å
  • b = 9.5506 (19) Å
  • c = 11.734 (2) Å
  • α = 106.82 (3)°
  • β = 100.14 (3)°
  • γ = 93.35 (3)°
  • V = 746.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.22 × 0.18 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 7448 measured reflections
  • 3401 independent reflections
  • 2309 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.130
  • S = 1.17
  • 3401 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809038781/hb5108sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038781/hb5108Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Spiro compounds are widely used in medicine, catalysis and optical materials (Lian et al., 2008; Jiang et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new spiro compounds with potentially higher bioactivity.

The 1,3-dioxane ring is in a distored envelope conformation with atom C11 atom common to the cyclohexane forming the flap. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of (Z)-3-phenylacrylaldehyde (7.92g, 0.06 mol) was added. The solution was then filtered and concentrated. Yellow blocks of (I) were obtained by evaporation of a petroleum ether–ethylacetate (3:1 v/v) solution at room temperature over a period of one week.

Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.

Crystal data

C18H18O4Z = 2
Mr = 298.32F(000) = 316
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1177 (14) ÅCell parameters from 3401 reflections
b = 9.5506 (19) Åθ = 3.1–27.5°
c = 11.734 (2) ŵ = 0.09 mm1
α = 106.82 (3)°T = 293 K
β = 100.14 (3)°Block, yellow
γ = 93.35 (3)°0.22 × 0.18 × 0.10 mm
V = 746.6 (3) Å3

Data collection

Bruker SMART CCD diffractometer2309 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
graphiteθmax = 27.5°, θmin = 3.1°
ω scansh = −8→9
7448 measured reflectionsk = −12→12
3401 independent reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.17w = 1/[σ2(Fo2) + (0.0724P)2] where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O40.07551 (13)0.64682 (9)0.13593 (9)0.0440 (3)
O30.27862 (12)0.86963 (9)0.18966 (9)0.0435 (3)
C18−0.01600 (18)0.86915 (14)0.26210 (12)0.0386 (3)
O2−0.18747 (14)0.63080 (11)0.20875 (11)0.0555 (3)
C17−0.05451 (19)0.70896 (14)0.20042 (13)0.0408 (3)
C110.19207 (18)0.73899 (13)0.09196 (12)0.0375 (3)
C120.07076 (19)0.77924 (15)−0.01133 (13)0.0443 (3)
H12A−0.02510.83960.01950.053*
H12B0.00420.6902−0.07230.053*
C100.35558 (19)0.65608 (14)0.05319 (14)0.0440 (3)
H10A0.30430.5604−0.00420.053*
H10B0.43530.64050.12350.053*
C160.16915 (19)0.94609 (15)0.26336 (13)0.0443 (3)
C4−0.2995 (2)1.28109 (15)0.52506 (13)0.0430 (3)
C14−0.1418 (2)1.08555 (15)0.39392 (13)0.0450 (3)
H14A−0.03151.15000.40690.054*
C15−0.15033 (19)0.93622 (15)0.32054 (13)0.0426 (3)
H15A−0.26350.87670.31160.051*
O10.23340 (15)1.06908 (12)0.32633 (13)0.0728 (4)
C13−0.2902 (2)1.13463 (16)0.44451 (13)0.0453 (3)
H13A−0.39941.06740.42600.054*
C5−0.4695 (2)1.31394 (17)0.56535 (14)0.0511 (4)
H5A−0.57451.24180.54080.061*
C90.4779 (2)0.74002 (16)−0.00542 (15)0.0520 (4)
H9A0.54220.83020.05510.062*
H9B0.57570.6807−0.03460.062*
C3−0.1442 (2)1.39115 (17)0.56447 (14)0.0505 (4)
H3A−0.02871.37160.53990.061*
C6−0.4845 (2)1.45175 (18)0.64115 (15)0.0576 (4)
H6A−0.59871.47170.66760.069*
C80.3571 (2)0.77756 (18)−0.11085 (16)0.0584 (4)
H8A0.30420.6875−0.17550.070*
H8B0.43760.8363−0.14260.070*
C2−0.1606 (2)1.52867 (18)0.63955 (15)0.0585 (4)
H2A−0.05631.60150.66490.070*
C70.1938 (2)0.86284 (17)−0.06957 (15)0.0551 (4)
H7A0.24710.9577−0.01150.066*
H7B0.11400.8803−0.13900.066*
C1−0.3313 (3)1.55903 (18)0.67735 (15)0.0590 (4)
H1A−0.34201.65230.72740.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O40.0515 (5)0.0329 (5)0.0487 (6)0.0045 (4)0.0164 (4)0.0102 (4)
O30.0393 (5)0.0384 (5)0.0451 (6)0.0004 (4)0.0101 (4)0.0006 (4)
C180.0396 (6)0.0387 (7)0.0341 (7)0.0034 (5)0.0056 (5)0.0072 (6)
O20.0517 (6)0.0479 (6)0.0653 (8)−0.0055 (5)0.0172 (5)0.0136 (5)
C170.0412 (7)0.0411 (7)0.0386 (7)0.0026 (6)0.0063 (6)0.0112 (6)
C110.0407 (6)0.0300 (6)0.0389 (7)0.0024 (5)0.0092 (5)0.0059 (5)
C120.0454 (7)0.0429 (7)0.0438 (8)0.0112 (6)0.0078 (6)0.0113 (6)
C100.0470 (7)0.0359 (6)0.0493 (8)0.0123 (6)0.0113 (6)0.0110 (6)
C160.0415 (7)0.0416 (7)0.0428 (8)0.0034 (6)0.0089 (6)0.0024 (6)
C40.0470 (7)0.0489 (7)0.0366 (7)0.0114 (6)0.0134 (6)0.0144 (6)
C140.0458 (7)0.0465 (7)0.0407 (8)0.0060 (6)0.0115 (6)0.0082 (6)
C150.0420 (7)0.0462 (7)0.0384 (7)0.0034 (6)0.0086 (6)0.0112 (6)
O10.0542 (6)0.0493 (6)0.0873 (9)−0.0122 (5)0.0238 (6)−0.0238 (6)
C130.0448 (7)0.0481 (7)0.0426 (8)0.0063 (6)0.0109 (6)0.0118 (6)
C50.0522 (8)0.0555 (8)0.0493 (9)0.0097 (7)0.0199 (7)0.0151 (7)
C90.0492 (8)0.0500 (8)0.0612 (10)0.0158 (7)0.0235 (7)0.0145 (7)
C30.0492 (8)0.0571 (9)0.0440 (9)0.0071 (7)0.0147 (6)0.0104 (7)
C60.0644 (10)0.0632 (9)0.0533 (10)0.0229 (8)0.0298 (8)0.0165 (8)
C80.0696 (10)0.0579 (9)0.0577 (10)0.0154 (8)0.0298 (8)0.0216 (8)
C20.0685 (10)0.0551 (9)0.0474 (9)0.0000 (8)0.0143 (8)0.0086 (8)
C70.0685 (10)0.0530 (8)0.0541 (10)0.0214 (7)0.0191 (8)0.0253 (8)
C10.0802 (11)0.0530 (9)0.0458 (9)0.0170 (8)0.0236 (8)0.0099 (7)

Geometric parameters (Å, °)

O4—C171.3536 (17)C14—C151.428 (2)
O4—C111.4344 (16)C14—H14A0.9300
O3—C161.3515 (17)C15—H15A0.9300
O3—C111.4437 (16)C13—H13A0.9300
C18—C151.3575 (19)C5—C61.381 (2)
C18—C161.4665 (19)C5—H5A0.9300
C18—C171.4765 (19)C9—C81.522 (2)
O2—C171.2062 (17)C9—H9A0.9700
C11—C101.5080 (18)C9—H9B0.9700
C11—C121.5174 (18)C3—C21.378 (2)
C12—C71.522 (2)C3—H3A0.9300
C12—H12A0.9700C6—C11.369 (2)
C12—H12B0.9700C6—H6A0.9300
C10—C91.524 (2)C8—C71.526 (2)
C10—H10A0.9700C8—H8A0.9700
C10—H10B0.9700C8—H8B0.9700
C16—O11.2045 (17)C2—C11.384 (2)
C4—C31.394 (2)C2—H2A0.9300
C4—C51.395 (2)C7—H7A0.9700
C4—C131.457 (2)C7—H7B0.9700
C14—C131.344 (2)C1—H1A0.9300
C17—O4—C11118.14 (10)C14—C15—H15A115.5
C16—O3—C11119.54 (10)C14—C13—C4127.39 (14)
C15—C18—C16123.28 (12)C14—C13—H13A116.3
C15—C18—C17117.99 (12)C4—C13—H13A116.3
C16—C18—C17118.63 (12)C6—C5—C4121.11 (15)
O2—C17—O4118.86 (12)C6—C5—H5A119.4
O2—C17—C18124.36 (14)C4—C5—H5A119.4
O4—C17—C18116.68 (12)C8—C9—C10111.66 (12)
O4—C11—O3110.01 (11)C8—C9—H9A109.3
O4—C11—C10107.54 (10)C10—C9—H9A109.3
O3—C11—C10106.20 (10)C8—C9—H9B109.3
O4—C11—C12109.82 (10)C10—C9—H9B109.3
O3—C11—C12110.77 (10)H9A—C9—H9B107.9
C10—C11—C12112.40 (12)C2—C3—C4120.55 (15)
C11—C12—C7111.29 (12)C2—C3—H3A119.7
C11—C12—H12A109.4C4—C3—H3A119.7
C7—C12—H12A109.4C1—C6—C5119.95 (15)
C11—C12—H12B109.4C1—C6—H6A120.0
C7—C12—H12B109.4C5—C6—H6A120.0
H12A—C12—H12B108.0C9—C8—C7110.64 (13)
C11—C10—C9111.33 (10)C9—C8—H8A109.5
C11—C10—H10A109.4C7—C8—H8A109.5
C9—C10—H10A109.4C9—C8—H8B109.5
C11—C10—H10B109.4C7—C8—H8B109.5
C9—C10—H10B109.4H8A—C8—H8B108.1
H10A—C10—H10B108.0C3—C2—C1120.34 (16)
O1—C16—O3117.67 (13)C3—C2—H2A119.8
O1—C16—C18125.75 (14)C1—C2—H2A119.8
O3—C16—C18116.55 (12)C12—C7—C8111.50 (12)
C3—C4—C5118.04 (14)C12—C7—H7A109.3
C3—C4—C13122.64 (13)C8—C7—H7A109.3
C5—C4—C13119.32 (14)C12—C7—H7B109.3
C13—C14—C15121.18 (14)C8—C7—H7B109.3
C13—C14—H14A119.4H7A—C7—H7B108.0
C15—C14—H14A119.4C6—C1—C2120.00 (16)
C18—C15—C14128.93 (13)C6—C1—H1A120.0
C18—C15—H15A115.5C2—C1—H1A120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.972.523.440 (2)158

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5108).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185–3189.
  • Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ.24, 441–444.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Or. C 28, 1501–1514.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography