PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2433.
Published online 2009 September 12. doi:  10.1107/S1600536809036022
PMCID: PMC2970363

N,N′-Bis(2-cyano­ethyl)-4,4′-dimethyl-N,N′-(butane-1,4-di­yl)dibenzene­sulfonamide

Abstract

The complete mol­ecule of the title compound, C24H30N4O4S2, is generated by a crystallographic inversion centre. In the crystal, weak C—H(...)O inter­actions link the mol­ecules, forming infinite sheets.

Related literature

For background to polyamines, see: Thomas & Thomas (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2433-scheme1.jpg

Experimental

Crystal data

  • C24H30N4O4S2
  • M r = 502.64
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2433-efi1.jpg
  • a = 16.688 (13) Å
  • b = 5.786 (5) Å
  • c = 13.675 (11) Å
  • β = 104.005 (13)°
  • V = 1281.3 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 296 K
  • 0.34 × 0.26 × 0.21 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.921, T max = 0.950
  • 6684 measured reflections
  • 2510 independent reflections
  • 2114 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.104
  • S = 1.05
  • 2510 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809036022/hb5089sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036022/hb5089Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Polyamines are natural products and have interesting biological activities. It present in the majority of cells. They play important roles in the synthesis of proteins, cell division, and bind to nucleic acids resulting in their condensation, thereby affecting gene expression. These effects might have implications in cancer treatment (e.g. Thomas & Thomas, 2003). We now report the crystal structure of the title compound, (I).

As shown in Fig.1, the title compound consists of two 4-methylbenzenesulfonyl groups anchoring to polyamine chain. In the structure of (I), the two phenyl ring of two 4-methylbenzenesulfonyl groups are antiparallel by symmetry.

In the crystal, the molecules are linked into infinite sheets by intermolecular C–H···O hydrogen bonds (Fig. 2).

Experimental

To a solution of 1,4-diaminobutane (8.8 g, 0.1 mol) in MeOH (300 ml), acrylonitrile (11.66 g, 0.22 mol) was added dropwise at room temperature during 1 h. After stirring for additional 7 h, the solvent was evaporated. The residue was fractionated in vacuum, yielding 17.27 g (89%) of N,N'-bis(2-cyanoethyl)-1,4-diaminobutane.

To a mixture of N,N'-bis(2-cyanoethyl)-1,4-diaminobutane (17.27 g, 89 mmol) and Et3N (17.98 g, 178 mmol) in THF (120 ml), a solution of 4-methylbenzenesulfonyl chloride (TsCl, 34.02 g, 178 mmol) in THF (120 ml) was added dropwise at room temperature. The precipitate was filtered off and discarded. The filtrate was subsequently washed with 4 mol/L NaOH (in order to hydrolyze any unreacted TsCl) and NaCl solution. Evaporation gave the target compound (I) as colourless rods (43.34 g, 97%).

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Atoms with the suffix a are generated by (–x, 1–y, 1–z).
Fig. 2.
One-dimensional structure of (I) along c axis, Hydrogen bonds are shown as dashed lines.

Crystal data

C24H30N4O4S2F(000) = 532
Mr = 502.64Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2757 reflections
a = 16.688 (13) Åθ = 3.0–27.6°
b = 5.786 (5) ŵ = 0.25 mm1
c = 13.675 (11) ÅT = 296 K
β = 104.005 (13)°Rod, colorless
V = 1281.3 (17) Å30.34 × 0.26 × 0.21 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer2510 independent reflections
Radiation source: fine-focus sealed tube2114 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −16→20
Tmin = 0.921, Tmax = 0.950k = −7→7
6684 measured reflectionsl = −16→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0583P)2 + 0.2525P] where P = (Fo2 + 2Fc2)/3
2510 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.24666 (2)0.32320 (7)0.53380 (3)0.03878 (15)
O10.20256 (7)0.1573 (2)0.57929 (10)0.0506 (3)
O20.30224 (8)0.2415 (2)0.47571 (10)0.0558 (3)
N10.17969 (8)0.4914 (2)0.46127 (10)0.0392 (3)
N20.09678 (12)0.0954 (3)0.26259 (14)0.0718 (5)
C10.30449 (9)0.4988 (3)0.63262 (12)0.0371 (4)
C20.33821 (10)0.7065 (3)0.61032 (13)0.0469 (4)
H2A0.32750.75920.54420.056*
C30.38797 (11)0.8344 (3)0.68757 (15)0.0532 (5)
H3A0.41080.97270.67250.064*
C40.40431 (10)0.7595 (4)0.78710 (14)0.0496 (4)
C50.36879 (11)0.5538 (4)0.80728 (13)0.0541 (5)
H5A0.37870.50200.87350.065*
C60.31883 (11)0.4232 (3)0.73143 (13)0.0498 (4)
H6A0.29520.28650.74680.060*
C70.45863 (13)0.8996 (4)0.87086 (16)0.0720 (6)
H7A0.48391.02330.84230.108*
H7B0.50080.80200.91030.108*
H7C0.42570.96250.91310.108*
C80.03371 (9)0.4433 (3)0.47933 (13)0.0450 (4)
H8A0.01440.42540.40690.054*
H8B0.04550.29080.50870.054*
C90.11282 (9)0.5880 (3)0.50313 (12)0.0429 (4)
H9A0.09990.74250.47650.052*
H9B0.13260.60080.57570.052*
C100.19632 (11)0.5953 (3)0.37044 (13)0.0469 (4)
H10A0.24930.54070.36220.056*
H10B0.19970.76180.37850.056*
C110.12903 (12)0.5356 (3)0.27550 (12)0.0497 (4)
H11A0.07880.61830.27720.060*
H11B0.14660.58680.21640.060*
C120.11145 (12)0.2864 (4)0.26701 (13)0.0499 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0360 (2)0.0370 (3)0.0428 (2)0.00198 (15)0.00858 (17)−0.00311 (16)
O10.0517 (7)0.0410 (7)0.0564 (7)−0.0076 (5)0.0077 (6)0.0045 (5)
O20.0506 (7)0.0601 (8)0.0597 (7)0.0117 (6)0.0191 (6)−0.0116 (7)
N10.0341 (7)0.0462 (8)0.0371 (7)0.0025 (6)0.0086 (5)−0.0004 (6)
N20.0825 (13)0.0529 (11)0.0736 (12)−0.0051 (10)0.0062 (10)−0.0087 (9)
C10.0296 (7)0.0394 (9)0.0420 (8)0.0018 (6)0.0080 (6)−0.0010 (7)
C20.0475 (9)0.0444 (10)0.0470 (9)−0.0020 (8)0.0075 (8)0.0057 (8)
C30.0520 (10)0.0429 (10)0.0627 (12)−0.0099 (8)0.0100 (9)−0.0004 (8)
C40.0377 (9)0.0570 (11)0.0531 (10)−0.0020 (8)0.0092 (8)−0.0103 (9)
C50.0539 (10)0.0667 (13)0.0400 (9)−0.0098 (9)0.0078 (8)−0.0006 (9)
C60.0490 (10)0.0542 (11)0.0464 (9)−0.0109 (8)0.0118 (8)0.0035 (8)
C70.0594 (12)0.0813 (16)0.0688 (14)−0.0156 (11)0.0033 (10)−0.0215 (12)
C80.0369 (8)0.0532 (11)0.0440 (9)0.0028 (8)0.0078 (7)−0.0079 (8)
C90.0371 (8)0.0465 (10)0.0441 (9)0.0045 (7)0.0077 (7)−0.0060 (8)
C100.0493 (10)0.0462 (10)0.0465 (9)−0.0050 (8)0.0140 (8)0.0028 (8)
C110.0633 (11)0.0454 (10)0.0388 (9)0.0042 (8)0.0092 (8)0.0056 (7)
C120.0549 (11)0.0527 (12)0.0395 (9)0.0032 (9)0.0062 (8)−0.0036 (8)

Geometric parameters (Å, °)

S1—O11.4392 (14)C6—H6A0.9300
S1—O21.4393 (14)C7—H7A0.9600
S1—N11.6259 (15)C7—H7B0.9600
S1—C11.7772 (18)C7—H7C0.9600
N1—C101.466 (2)C8—C8i1.524 (3)
N1—C91.481 (2)C8—C91.530 (2)
N2—C121.130 (3)C8—H8A0.9700
C1—C61.385 (2)C8—H8B0.9700
C1—C21.392 (2)C9—H9A0.9700
C2—C31.389 (3)C9—H9B0.9700
C2—H2A0.9300C10—C111.536 (2)
C3—C41.391 (3)C10—H10A0.9700
C3—H3A0.9300C10—H10B0.9700
C4—C51.387 (3)C11—C121.471 (3)
C4—C71.513 (3)C11—H11A0.9700
C5—C61.387 (3)C11—H11B0.9700
C5—H5A0.9300
O1—S1—O2118.99 (9)H7A—C7—H7B109.5
O1—S1—N1108.36 (9)C4—C7—H7C109.5
O2—S1—N1107.44 (9)H7A—C7—H7C109.5
O1—S1—C1107.02 (9)H7B—C7—H7C109.5
O2—S1—C1107.68 (9)C8i—C8—C9111.23 (18)
N1—S1—C1106.75 (9)C8i—C8—H8A109.4
C10—N1—C9119.19 (14)C9—C8—H8A109.4
C10—N1—S1121.28 (12)C8i—C8—H8B109.4
C9—N1—S1117.45 (11)C9—C8—H8B109.4
C6—C1—C2120.19 (16)H8A—C8—H8B108.0
C6—C1—S1119.69 (14)N1—C9—C8113.80 (14)
C2—C1—S1120.06 (13)N1—C9—H9A108.8
C3—C2—C1119.52 (17)C8—C9—H9A108.8
C3—C2—H2A120.2N1—C9—H9B108.8
C1—C2—H2A120.2C8—C9—H9B108.8
C2—C3—C4121.16 (18)H9A—C9—H9B107.7
C2—C3—H3A119.4N1—C10—C11111.99 (15)
C4—C3—H3A119.4N1—C10—H10A109.2
C5—C4—C3118.05 (17)C11—C10—H10A109.2
C5—C4—C7121.07 (18)N1—C10—H10B109.2
C3—C4—C7120.88 (19)C11—C10—H10B109.2
C4—C5—C6121.83 (17)H10A—C10—H10B107.9
C4—C5—H5A119.1C12—C11—C10112.22 (15)
C6—C5—H5A119.1C12—C11—H11A109.2
C1—C6—C5119.23 (18)C10—C11—H11A109.2
C1—C6—H6A120.4C12—C11—H11B109.2
C5—C6—H6A120.4C10—C11—H11B109.2
C4—C7—H7A109.5H11A—C11—H11B107.9
C4—C7—H7B109.5N2—C12—C11178.0 (2)
O1—S1—N1—C10−149.35 (13)C1—C2—C3—C4−0.4 (3)
O2—S1—N1—C10−19.60 (15)C2—C3—C4—C5−0.6 (3)
C1—S1—N1—C1095.68 (14)C2—C3—C4—C7179.95 (17)
O1—S1—N1—C947.17 (14)C3—C4—C5—C60.5 (3)
O2—S1—N1—C9176.93 (11)C7—C4—C5—C6179.98 (18)
C1—S1—N1—C9−67.79 (13)C2—C1—C6—C5−1.6 (3)
O1—S1—C1—C617.62 (16)S1—C1—C6—C5175.56 (13)
O2—S1—C1—C6−111.40 (15)C4—C5—C6—C10.6 (3)
N1—S1—C1—C6133.48 (14)C10—N1—C9—C8102.87 (18)
O1—S1—C1—C2−165.17 (13)S1—N1—C9—C8−93.29 (15)
O2—S1—C1—C265.80 (15)C8i—C8—C9—N1−177.68 (17)
N1—S1—C1—C2−49.32 (15)C9—N1—C10—C11−73.0 (2)
C6—C1—C2—C31.6 (3)S1—N1—C10—C11123.77 (15)
S1—C1—C2—C3−175.62 (13)N1—C10—C11—C12−50.0 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5A···O2ii0.932.543.271 (4)136

Symmetry codes: (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5089).

References

  • Bruker (2001). SAINT-Plus and SMART Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Thomas, T. & Thomas, T. J. (2003). J. Cell. Mol. Med.7, 113–126. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography