PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2452.
Published online 2009 September 12. doi:  10.1107/S1600536809036101
PMCID: PMC2970359

N-p-Tolyladamantane-1-carboxamide

Abstract

In the crystal of the title compound, C18H23NO, the mol­ecules are linked into chains along the c axis by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For For bond-length data, see: Allen et al. (1987 [triangle]). For the synthesis of the title compound, see: Karle et al. (1997 [triangle]); Tadashi et al. (1969 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-o2452-scheme1.jpg

Experimental

Crystal data

  • C18H23NO
  • M r = 269.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2452-efi1.jpg
  • a = 30.708 (7) Å
  • b = 9.7927 (2) Å
  • c = 10.0203 (6) Å
  • V = 3013.2 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 298 K
  • 0.50 × 0.30 × 0.30 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.964, T max = 0.978
  • 27405 measured reflections
  • 3443 independent reflections
  • 2652 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.174
  • S = 1.16
  • 3443 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036101/er2072sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036101/er2072Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

supplementary crystallographic information

Comment

The unique structure of adamantane and the pharmaccutical effects of adamantane-containing agents on virus (Davis et al., 1964) have attracted many chemists and pharmacologists to do considerable work on the syntheses of adamantane derivatives (Fort et al., 1964). The crystal structure of the title compound (I) is reported herein.

The molecular structure of compound (I), C18H23ON, is shown in Figure 1. All bond lengths and bond correspond to the geometry parameters expected for atom types and the type of hybridization (Allen et al., 1987). The bonds to nitrogen of the title amide, Fig. 1, the torsion angles of O1—C8—N1—C1 and C9—C8—N1—C1 are 1.70 (3)° and 178.59 (18)°, respectively. The C8—N1 bond has considerable double-bond characer, at 1.349 (2) Å, is substantially shorter than the normal C—N single-bond distance observed in amines. In the crystal of (I), the intermolecular N1—H···O1 H-bonds linked molecules to chains along the c axis (Fig.2). And the N1—H···O1 bond length is 2.962 (2) Å.

Experimental

A solution of freshly prepared 1-adamantane carbonyl chloride (1 mmol, prepared by refluxing 1-adamantane carboxylic acid with 3M excess of SOCl2) in dry CH2Cl2 was added dropwise to a well stirred and ice-cooled solution of p-toluidine (1 mmol) and triethylamine (2 mmol) in the same solvent. After 24 h of stirring at room temperature, the solvents were removed in vacuo and the residue was recrystallized from methanol. Colorless single crystals of the title compound suitable for X-ray diffraction analysis were obtained then and the yield was 80% (Isabella et al. 1997; Tadashi et al., 1969).

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
Fig. 2.
A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C18H23NOF(000) = 1168
Mr = 269.37Dx = 1.188 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 4945 reflections
a = 30.708 (7) Åθ = 2.5–27.5°
b = 9.7927 (2) ŵ = 0.07 mm1
c = 10.0203 (6) ÅT = 298 K
V = 3013.2 (7) Å3Block, colourless
Z = 80.50 × 0.30 × 0.30 mm

Data collection

Rigaku SCXmini diffractometer3443 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
graphiteRint = 0.080
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD Profile fitting scansh = −39→39
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −12→12
Tmin = 0.964, Tmax = 0.978l = −12→12
27405 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.0692P)2 + 0.7031P] where P = (Fo2 + 2Fc2)/3
3443 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.41659 (6)0.06223 (19)−0.01785 (19)0.0377 (4)
C20.41516 (7)−0.0339 (2)0.0824 (2)0.0487 (5)
H20.3978−0.01950.15700.058*
C30.43961 (8)−0.1518 (2)0.0718 (2)0.0531 (6)
H30.4382−0.21590.14010.064*
C40.46586 (7)−0.1775 (2)−0.0360 (2)0.0497 (5)
C50.46711 (7)−0.0805 (2)−0.1354 (2)0.0531 (6)
H50.4846−0.0952−0.20970.064*
C60.44298 (7)0.0383 (2)−0.1273 (2)0.0485 (5)
H60.44450.1024−0.19560.058*
C70.49221 (9)−0.3075 (3)−0.0462 (3)0.0744 (8)
H7A0.5182−0.2903−0.09670.112*
H7B0.4752−0.3765−0.09010.112*
H7C0.4999−0.33820.04170.112*
C80.37650 (6)0.2542 (2)0.08852 (18)0.0364 (4)
C90.34923 (6)0.38031 (19)0.05641 (18)0.0351 (4)
C100.33115 (7)0.4418 (2)0.1861 (2)0.0472 (5)
H10A0.35500.46670.24460.057*
H10B0.31330.37460.23170.057*
C110.30364 (8)0.5690 (2)0.1545 (2)0.0534 (6)
H110.29230.60760.23780.064*
C120.33198 (9)0.6739 (2)0.0850 (3)0.0618 (7)
H12A0.35610.69900.14240.074*
H12B0.31510.75550.06670.074*
C130.34927 (8)0.6146 (2)−0.0453 (2)0.0549 (6)
H130.36710.6831−0.09100.066*
C140.37712 (7)0.4883 (2)−0.0142 (2)0.0446 (5)
H14A0.38880.4509−0.09640.053*
H14B0.40140.51400.04250.053*
C150.31066 (7)0.3420 (2)−0.0341 (2)0.0437 (5)
H15A0.32140.3033−0.11690.052*
H15B0.29280.27370.00980.052*
C160.28321 (7)0.4687 (2)−0.0641 (2)0.0535 (6)
H160.25870.4435−0.12170.064*
C170.31163 (8)0.5726 (3)−0.1349 (2)0.0591 (6)
H17A0.29440.6523−0.15780.071*
H17B0.32290.5335−0.21690.071*
C180.26607 (8)0.5283 (3)0.0655 (3)0.0599 (6)
H18A0.24820.60760.04660.072*
H18B0.24810.46120.11080.072*
N10.39146 (6)0.18381 (17)−0.01773 (15)0.0414 (4)
H10.38500.2166−0.09480.050*
O10.38450 (5)0.21905 (16)0.20311 (13)0.0529 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0387 (10)0.0392 (10)0.0352 (10)0.0041 (8)−0.0014 (8)−0.0063 (8)
C20.0507 (12)0.0489 (12)0.0466 (12)0.0075 (10)0.0105 (10)0.0025 (10)
C30.0563 (13)0.0424 (12)0.0605 (14)0.0078 (10)0.0049 (11)0.0054 (10)
C40.0426 (11)0.0435 (12)0.0630 (14)0.0054 (10)−0.0001 (11)−0.0114 (10)
C50.0505 (12)0.0568 (14)0.0521 (13)0.0072 (11)0.0102 (10)−0.0147 (11)
C60.0549 (13)0.0503 (12)0.0401 (11)0.0064 (10)0.0073 (9)−0.0032 (9)
C70.0662 (16)0.0551 (15)0.102 (2)0.0201 (13)0.0048 (16)−0.0105 (15)
C80.0393 (10)0.0396 (10)0.0301 (9)0.0009 (8)−0.0011 (8)−0.0010 (8)
C90.0373 (10)0.0367 (10)0.0314 (9)0.0023 (8)0.0015 (8)−0.0010 (8)
C100.0554 (13)0.0460 (12)0.0401 (11)0.0084 (10)0.0054 (9)−0.0034 (9)
C110.0580 (13)0.0476 (13)0.0546 (13)0.0119 (11)0.0107 (11)−0.0057 (10)
C120.0654 (15)0.0386 (12)0.0813 (18)0.0055 (11)0.0027 (13)−0.0045 (12)
C130.0574 (13)0.0424 (12)0.0650 (15)−0.0040 (10)0.0069 (12)0.0133 (11)
C140.0436 (11)0.0420 (11)0.0480 (11)−0.0012 (9)0.0047 (9)0.0015 (9)
C150.0420 (11)0.0435 (11)0.0455 (11)−0.0007 (9)−0.0027 (9)−0.0001 (9)
C160.0459 (12)0.0566 (14)0.0580 (13)0.0049 (11)−0.0076 (10)0.0047 (11)
C170.0641 (15)0.0552 (14)0.0580 (14)0.0144 (12)−0.0006 (12)0.0184 (12)
C180.0455 (12)0.0543 (14)0.0799 (17)0.0116 (11)0.0081 (12)0.0055 (13)
N10.0521 (10)0.0437 (9)0.0284 (8)0.0141 (8)0.0000 (7)0.0007 (7)
O10.0778 (11)0.0511 (9)0.0297 (7)0.0213 (8)−0.0035 (7)−0.0015 (6)

Geometric parameters (Å, °)

C1—C21.377 (3)C10—H10B0.9700
C1—C61.383 (3)C11—C181.512 (3)
C1—N11.419 (2)C11—C121.516 (3)
C2—C31.381 (3)C11—H110.9800
C2—H20.9300C12—C131.525 (3)
C3—C41.371 (3)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.377 (3)C13—C171.520 (3)
C4—C71.512 (3)C13—C141.536 (3)
C5—C61.382 (3)C13—H130.9800
C5—H50.9300C14—H14A0.9700
C6—H60.9300C14—H14B0.9700
C7—H7A0.9600C15—C161.530 (3)
C7—H7B0.9600C15—H15A0.9700
C7—H7C0.9600C15—H15B0.9700
C8—O11.224 (2)C16—C171.517 (3)
C8—N11.349 (2)C16—C181.518 (3)
C8—C91.526 (3)C16—H160.9800
C9—C141.534 (3)C17—H17A0.9700
C9—C101.536 (3)C17—H17B0.9700
C9—C151.538 (3)C18—H18A0.9700
C10—C111.537 (3)C18—H18B0.9700
C10—H10A0.9700N1—H10.8600
C2—C1—C6118.76 (19)C11—C12—C13109.58 (19)
C2—C1—N1123.74 (17)C11—C12—H12A109.8
C6—C1—N1117.48 (18)C13—C12—H12A109.8
C1—C2—C3119.8 (2)C11—C12—H12B109.8
C1—C2—H2120.1C13—C12—H12B109.8
C3—C2—H2120.1H12A—C12—H12B108.2
C4—C3—C2122.3 (2)C17—C13—C12110.1 (2)
C4—C3—H3118.9C17—C13—C14109.01 (19)
C2—C3—H3118.9C12—C13—C14109.09 (19)
C3—C4—C5117.4 (2)C17—C13—H13109.5
C3—C4—C7121.5 (2)C12—C13—H13109.5
C5—C4—C7121.1 (2)C14—C13—H13109.5
C4—C5—C6121.6 (2)C9—C14—C13109.75 (17)
C4—C5—H5119.2C9—C14—H14A109.7
C6—C5—H5119.2C13—C14—H14A109.7
C5—C6—C1120.2 (2)C9—C14—H14B109.7
C5—C6—H6119.9C13—C14—H14B109.7
C1—C6—H6119.9H14A—C14—H14B108.2
C4—C7—H7A109.5C16—C15—C9109.99 (17)
C4—C7—H7B109.5C16—C15—H15A109.7
H7A—C7—H7B109.5C9—C15—H15A109.7
C4—C7—H7C109.5C16—C15—H15B109.7
H7A—C7—H7C109.5C9—C15—H15B109.7
H7B—C7—H7C109.5H15A—C15—H15B108.2
O1—C8—N1121.90 (18)C17—C16—C18110.0 (2)
O1—C8—C9122.38 (17)C17—C16—C15108.61 (18)
N1—C8—C9115.72 (15)C18—C16—C15109.57 (19)
C8—C9—C14110.41 (15)C17—C16—H16109.5
C8—C9—C10109.71 (15)C18—C16—H16109.5
C14—C9—C10108.77 (16)C15—C16—H16109.5
C8—C9—C15110.43 (16)C16—C17—C13110.00 (19)
C14—C9—C15109.04 (16)C16—C17—H17A109.7
C10—C9—C15108.43 (16)C13—C17—H17A109.7
C9—C10—C11110.01 (17)C16—C17—H17B109.7
C9—C10—H10A109.7C13—C17—H17B109.7
C11—C10—H10A109.7H17A—C17—H17B108.2
C9—C10—H10B109.7C11—C18—C16109.94 (19)
C11—C10—H10B109.7C11—C18—H18A109.7
H10A—C10—H10B108.2C16—C18—H18A109.7
C18—C11—C12110.2 (2)C11—C18—H18B109.7
C18—C11—C10109.11 (18)C16—C18—H18B109.7
C12—C11—C10109.15 (18)H18A—C18—H18B108.2
C18—C11—H11109.4C8—N1—C1127.93 (16)
C12—C11—H11109.4C8—N1—H1116.0
C10—C11—H11109.4C1—N1—H1116.0
C6—C1—C2—C3−0.4 (3)C11—C12—C13—C14−61.2 (2)
N1—C1—C2—C3177.7 (2)C8—C9—C14—C13−179.79 (16)
C1—C2—C3—C40.3 (4)C10—C9—C14—C13−59.4 (2)
C2—C3—C4—C5−0.1 (4)C15—C9—C14—C1358.7 (2)
C2—C3—C4—C7−179.7 (2)C17—C13—C14—C9−59.7 (2)
C3—C4—C5—C60.1 (4)C12—C13—C14—C960.5 (2)
C7—C4—C5—C6179.6 (2)C8—C9—C15—C16179.22 (16)
C4—C5—C6—C1−0.2 (3)C14—C9—C15—C16−59.3 (2)
C2—C1—C6—C50.4 (3)C10—C9—C15—C1659.0 (2)
N1—C1—C6—C5−177.82 (19)C9—C15—C16—C1760.4 (2)
O1—C8—C9—C14114.5 (2)C9—C15—C16—C18−59.8 (2)
N1—C8—C9—C14−65.3 (2)C18—C16—C17—C1358.4 (2)
O1—C8—C9—C10−5.4 (3)C15—C16—C17—C13−61.5 (3)
N1—C8—C9—C10174.87 (17)C12—C13—C17—C16−58.3 (3)
O1—C8—C9—C15−124.8 (2)C14—C13—C17—C1661.3 (2)
N1—C8—C9—C1555.4 (2)C12—C11—C18—C1659.4 (2)
C8—C9—C10—C11180.00 (17)C10—C11—C18—C16−60.5 (2)
C14—C9—C10—C1159.1 (2)C17—C16—C18—C11−58.9 (2)
C15—C9—C10—C11−59.3 (2)C15—C16—C18—C1160.4 (2)
C9—C10—C11—C1860.4 (2)O1—C8—N1—C11.7 (3)
C9—C10—C11—C12−60.1 (2)C9—C8—N1—C1−178.59 (18)
C18—C11—C12—C13−59.0 (2)C2—C1—N1—C828.1 (3)
C10—C11—C12—C1360.8 (3)C6—C1—N1—C8−153.8 (2)
C11—C12—C13—C1758.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.122.962 (2)166

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2072).

References

  • Allen, F. H. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Karle, I. S., Ranganathan, D. & Haridas, D. (1997). J. Am. Chem. Soc.119, 2777–2783.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tadashi Sasaki, (1969). Bull. Chem. Soc. Jpn, 42, 1617–1621.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography