PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2307.
Published online 2009 September 5. doi:  10.1107/S1600536809034059
PMCID: PMC2970358

[(Di-o-tolyl­phosphino)meth­yl]diphenyl­phosphine sulfide

Abstract

In the title compound, C27H26P2S, the P—C—P angle is 114.33 (13)°. The bond distances are longer and the bond angles are smaller at the P atom bonded to the o-tolyl groups owing to the presence of a lone pair of electrons. One phenyl ring is disordered over three sites [occupancies 0.317 (8), 0.250 (8), and 0.433 (6)] and the other phenyl ring is disordered over two sites [occupancies 0.871 (6) and 0.129 (6)].

Related literature

For the synthesis of unsymmetrical (phosphinometh­yl)phosphine monosulfides, see: Grim & Mitchell (1977 [triangle]); Grim et al. (1980 [triangle]). For the structures of related disulfides, see: Carmalt et al. (1996 [triangle]); Jones et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2307-scheme1.jpg

Experimental

Crystal data

  • C27H26P2S
  • M r = 444.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2307-efi1.jpg
  • a = 20.0639 (15) Å
  • b = 7.2739 (5) Å
  • c = 16.4160 (11) Å
  • β = 92.519 (4)°
  • V = 2393.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 193 K
  • 0.35 × 0.33 × 0.19 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.935, T max = 0.974
  • 40516 measured reflections
  • 4447 independent reflections
  • 3092 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.112
  • S = 1.01
  • 4447 reflections
  • 439 parameters
  • 713 restraints
  • H-atom parameters not refined
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and CrystalMaker (CrystalMaker, 1994 [triangle]); software used to prepare material for publication: XCIF (Bruker, 2005 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809034059/ng2633sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034059/ng2633Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Science Foundation (grant CHE-0548107) for support of this work. AHB thanks the NSF LSAMP Program (grant HRD-0413000) for research support. The Materials Chemistry Laboratory at the University of Illinois was supported in part by grants from the NSF (CHE 95–03145 and CHE 03–43032).

supplementary crystallographic information

Comment

Unsymmetrical (phosphinomethyl)phosphine monosulfides have been examined as ligands and have been used as precursors to their corresponding mixed bisphosphine ligands (Grim & Mitchell, 1977; Grim et al., 1980). We are interested in the steric properties of mixed aryl-aryl bisphosphine sulfides and their derivatives. The title compound, (di-o-tolylphosphino)methyldiphenylphosphine sulfide (C27H26P2S), has not previously been reported, and its structure is shown in Fig. 1. The phenyl ring C1 to C6 is disordered over three sites and the phenyl ring C7 to C12 is disordered over two sites. The compound has a P1═S1 bond length of 1.950 (1) Å, which is similar to the P═S bond distances found in (bisphosphino)methane disulfides (Jones et al., 2002; Camalt et al., 1996). The P1—C(methylene) bond distance of 1.812 (3) Å is slightly shorter than the P2—C(methylene) bond distance of 1.852 (3) Å, where P1 is the diphenylphosphino P atom bonded to sulfur and P2 is the (di-o-tolyl)phosphino P atom. The P—C—P bond angle of 114.33 (13)° is larger than the expected value of 109.5° for a tetrahedral C atom. The C—P1—C bond angles range from 104.5 (4) to 106.15 (13)°. However, the C—P2—C bond angles of 100.23 (10) to 100.94 (11)° are significantly smaller. The longer bond distances and smaller bond angles at P2 are due to its lone pair of electrons.

Experimental

The title compound was prepared from a procedure adapted from that described by Grim et al. (1980) for the synthesis of unsymmetric (phosphinomethyl)phosphine sulfides. Under an N2 atmosphere, Ph2PSCH2Li was formed from the addition of MeLi (8.84 ml of a 1.6 M solution in Et2O, 14.1 mmol) over 1 h to a suspension of Ph3PS (4.16 g, 14.1 mmol) in THF (16 ml) and Et2O (12 ml). After stirring an additional hour, the Ph2PSCH2Li solution was added to a suspension of (o-tolyl)2PCl (3.51 g, 14.1 mmol) in Et2O (16 ml) over 3 h. The mixture was stirred overnight. Solvents were removed under vacuum, and the residue was dissolved in CH2Cl2 (24 ml), washed with H2O (3 × 25 ml), and dried over MgSO4. Solvent was removed, and the resulting oil was dissolved in absolute EtOH (50 ml) to give colorless clusters of the title compound (2.69 g, 43%). Mp: 128.4–129.0 °C. Anal. Calcd for C27H26P2S: C, 72.96; H, 5.90; P, 13.94; S, 7.21. Found: C, 72.65; H, 5.94; P, 14.70; S, 7.28. 1H NMR (CDCl3): δ 2.30 (s, CH3), 3.34 (d, 12.5 Hz, CH2), 7.05–7.88 (m, C6H5 and C6H4CH3). 13C{1H} NMR (CDCl3): δ 21.3 (d, 3JCP = 22 Hz, CH3), 33.1 (dd, 1JCP = 54 Hz, 1JCP = 32 Hz, CH2), 126.0 (s, C6H4CH3), 128.4 (d, J = 12 Hz, m-C6H5), 128.8 (s, C6H4CH3), 130.2 (d, J = 5 Hz, C6H4CH3), 131.2–131.7 (o-,p-C6H5 and C6H4CH3), 132.3 (d, 1JCP = 82 Hz, i–PC6H5), 136.2 (dd, 1JCP = 15,8 Hz, i–PC6H4CH3), 142.3 (d, 2JCP = 29 Hz, iCCH3). 31P {1H} NMR (CDCl3): δ -48.5 (d, 2JPP = 74 Hz, P(C6H4CH3)2), 40.2 (d, 2JPP = 74 Hz, PS(C6H5)2). IR (nujol mull between KBr plates, cm-1): C—H (3074, 3050), CC (1593, 1470, 1436), PS (745).

Single crystals suitable for X-ray diffraction were grown from slow diffusion of pentane into a concentrated EtOH solution at room temperature.

Refinement

A structural model consisting of the molecule was developed. Two of the phenyl rings had poorly determined positions. In each disordered phenyl the geometry was idealized by restraining opposite C—C bond distances across the immaginary mirror plane that goes through the pivot carbon and C4' atom in the ring to be similar distances (e.s.d. 0.01). The C—P bond distances were restrained as similar distances (e.s.d. 0.01) and all phenyl rings in the disordered sites were forced to be flat (e.s.d. 0.01). The phenyl ring that contains atoms C1 thru C6 was disordered over 3 sites with each orientation being occupied by 31.7 (8), 25.0 (8), and 43.3 (6)% respectively. The phenyl ring that contains C7 thru C12 was disordered over two sites with the primary orientation being occupied 87.1 (6)% of the time. Rigid-bond restraints (e.s.d. 0.01) were imposed on displacement parameters for all disordered sites and similar displacement amplitudes (e.s.d. 0.01) were imposed on disordered sites overlapping by less than the sum of the Van der Waals radii. Methyl H atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H···H distances. Remaining H atoms were included as riding idealized contributors. Methyl H atom U's were assigned as 1.5 times Ueq of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier Ueq.

Figures

Fig. 1.
Molecular structure of the title compound showing disorder of the phenyl ring C1 to C6 over three sites and the phenyl ring C7 to C12 over two sites with 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms.

Crystal data

C27H26P2SF(000) = 936
Mr = 444.48Dx = 1.233 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5909 reflections
a = 20.0639 (15) Åθ = 2.7–24.2°
b = 7.2739 (5) ŵ = 0.28 mm1
c = 16.4160 (11) ÅT = 193 K
β = 92.519 (4)°Prism, colourless
V = 2393.5 (3) Å30.35 × 0.33 × 0.19 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer4447 independent reflections
Radiation source: fine-focus sealed tube3092 reflections with I > 2σ(I)
graphiteRint = 0.063
profile data from [var phi] and ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −24→24
Tmin = 0.935, Tmax = 0.974k = −8→8
40516 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters not refined
S = 1.01w = 1/[σ2(Fo2) + (0.0481P)2 + 1.3507P] where P = (Fo2 + 2Fc2)/3
4447 reflections(Δ/σ)max = 0.001
439 parametersΔρmax = 0.36 e Å3
713 restraintsΔρmin = −0.22 e Å3

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2004). Six frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005) before using SADABS (Bruker, 2005) to sort, merge, and scale the combined data. No decay correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The highest peaks in the final difference Fourier map were in the vicinity of atoms P1, P2, and C20; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.18814 (4)−0.05273 (10)0.82663 (4)0.0549 (2)
P10.17515 (4)0.14683 (10)0.90362 (4)0.0423 (2)
P20.32375 (3)0.25293 (8)0.91684 (4)0.03177 (17)
C10.0953 (4)0.2626 (17)0.8887 (9)0.0559 (19)0.317 (8)
C20.0797 (6)0.4395 (18)0.9115 (9)0.071 (2)0.317 (8)
H2A0.11370.51150.93800.085*0.317 (8)
C30.0176 (6)0.5177 (16)0.8982 (8)0.078 (2)0.317 (8)
H3A0.00860.63980.91510.093*0.317 (8)
C4−0.0306 (6)0.412 (2)0.8595 (9)0.087 (2)0.317 (8)
H4A−0.07380.46240.84870.104*0.317 (8)
C5−0.0178 (5)0.235 (2)0.8360 (10)0.080 (2)0.317 (8)
H5A−0.05210.16460.80950.096*0.317 (8)
C60.0448 (5)0.1597 (17)0.8507 (10)0.067 (2)0.317 (8)
H6A0.05320.03670.83470.081*0.317 (8)
C1B0.0989 (6)0.276 (2)0.8738 (11)0.061 (2)0.250 (8)
C2B0.0880 (7)0.453 (2)0.9018 (12)0.068 (2)0.250 (8)
H2BA0.12110.50520.93790.082*0.250 (8)
C3B0.0327 (7)0.558 (2)0.8813 (10)0.080 (2)0.250 (8)
H3BA0.02890.67830.90320.096*0.250 (8)
C4B−0.0169 (7)0.490 (2)0.8293 (10)0.083 (2)0.250 (8)
H4BA−0.05520.56150.81470.100*0.250 (8)
C5B−0.0092 (6)0.316 (2)0.7994 (10)0.086 (2)0.250 (8)
H5BA−0.04270.26480.76360.104*0.250 (8)
C6B0.0469 (6)0.216 (2)0.8210 (10)0.071 (2)0.250 (8)
H6BA0.05060.09640.79840.085*0.250 (8)
C1C0.0946 (3)0.2509 (10)0.8906 (4)0.0525 (16)0.433 (6)
C2C0.0866 (4)0.4292 (11)0.8658 (5)0.0660 (17)0.433 (6)
H2CA0.12420.50510.85740.079*0.433 (6)
C3C0.0224 (4)0.4969 (13)0.8530 (5)0.0841 (19)0.433 (6)
H3CA0.01540.62040.83590.101*0.433 (6)
C4C−0.0306 (4)0.3838 (12)0.8654 (5)0.0897 (19)0.433 (6)
H4CA−0.07440.43100.85590.108*0.433 (6)
C5C−0.0232 (3)0.2051 (12)0.8908 (6)0.083 (2)0.433 (6)
H5CA−0.06100.13000.89950.100*0.433 (6)
C6C0.0405 (3)0.1378 (11)0.9032 (5)0.0685 (19)0.433 (6)
H6CA0.04740.01430.92040.082*0.433 (6)
C70.17930 (17)0.0688 (5)1.00919 (18)0.0414 (9)0.871 (6)
C80.19203 (18)−0.1139 (4)1.0286 (2)0.0522 (10)0.871 (6)
H8A0.1983−0.20050.98630.063*0.871 (6)
C90.1956 (2)−0.1711 (5)1.1092 (2)0.0640 (12)0.871 (6)
H9A0.2044−0.29641.12200.077*0.871 (6)
C100.1867 (2)−0.0475 (5)1.1703 (2)0.0607 (11)0.871 (6)
H10A0.1892−0.08691.22550.073*0.871 (6)
C110.1740 (2)0.1334 (6)1.1521 (2)0.0565 (11)0.871 (6)
H11A0.16770.21891.19490.068*0.871 (6)
C120.1704 (2)0.1923 (5)1.0719 (2)0.0462 (9)0.871 (6)
H12A0.16180.31801.05980.055*0.871 (6)
C7B0.1592 (12)0.102 (3)1.0092 (7)0.046 (3)0.129 (6)
C8B0.1518 (12)−0.082 (3)1.0271 (10)0.052 (3)0.129 (6)
H8BA0.1495−0.17070.98480.062*0.129 (6)
C9B0.1479 (13)−0.135 (3)1.1080 (10)0.061 (2)0.129 (6)
H9BA0.1429−0.26071.12140.073*0.129 (6)
C10B0.1512 (12)−0.005 (3)1.1684 (10)0.060 (3)0.129 (6)
H10B0.1484−0.04291.22360.072*0.129 (6)
C11B0.1585 (15)0.177 (3)1.1507 (12)0.053 (3)0.129 (6)
H11B0.16060.26531.19340.064*0.129 (6)
C12B0.1626 (16)0.232 (3)1.0703 (13)0.048 (3)0.129 (6)
H12B0.16780.35871.05750.058*0.129 (6)
C130.23640 (12)0.3288 (3)0.89744 (14)0.0368 (6)
H13A0.22610.42540.93750.044*
H13B0.23220.38450.84240.044*
C140.33277 (12)0.2801 (3)1.02845 (13)0.0319 (5)
C150.35109 (13)0.1284 (3)1.07706 (14)0.0355 (6)
C160.35666 (13)0.1529 (4)1.16115 (15)0.0436 (7)
H16A0.36880.05131.19500.052*
C170.34508 (15)0.3198 (4)1.19610 (15)0.0480 (7)
H17A0.34900.33281.25370.058*
C180.32772 (15)0.4695 (4)1.14798 (15)0.0506 (8)
H18A0.31960.58561.17210.061*
C190.32229 (13)0.4484 (3)1.06448 (14)0.0399 (6)
H19A0.31110.55161.03120.048*
C200.36521 (17)−0.0566 (4)1.04103 (17)0.0573 (8)
H20A0.3286−0.09091.00250.086*
H20B0.3692−0.14841.08470.086*
H20C0.4070−0.05121.01240.086*
C210.36910 (13)0.4573 (3)0.88391 (13)0.0349 (6)
C220.43854 (14)0.4437 (4)0.88096 (16)0.0482 (7)
C230.47409 (17)0.5932 (5)0.8522 (2)0.0655 (9)
H23A0.52120.58490.85000.079*
C240.4426 (2)0.7518 (4)0.82709 (18)0.0670 (10)
H24A0.46780.85140.80700.080*
C250.37510 (19)0.7663 (4)0.83110 (15)0.0559 (8)
H25A0.35310.87680.81480.067*
C260.33887 (15)0.6207 (3)0.85878 (14)0.0415 (6)
H26A0.29180.63200.86080.050*
C270.47553 (16)0.2744 (5)0.9088 (2)0.0741 (10)
H27A0.45310.16540.88560.111*
H27B0.47630.26740.96840.111*
H27C0.52140.27970.89060.111*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0666 (5)0.0505 (4)0.0476 (4)−0.0067 (4)0.0020 (4)−0.0170 (3)
P10.0467 (4)0.0439 (4)0.0360 (4)−0.0044 (3)0.0011 (3)−0.0062 (3)
P20.0453 (4)0.0260 (3)0.0240 (3)0.0012 (3)0.0009 (3)−0.0007 (2)
C10.040 (3)0.071 (3)0.056 (4)0.000 (3)0.001 (3)−0.010 (3)
C20.052 (3)0.075 (3)0.084 (4)0.007 (3)−0.012 (4)−0.009 (4)
C30.053 (4)0.086 (4)0.094 (4)0.011 (3)−0.004 (4)−0.003 (4)
C40.051 (3)0.099 (4)0.110 (4)0.014 (3)−0.007 (4)−0.001 (4)
C50.046 (3)0.097 (4)0.097 (5)−0.001 (4)−0.007 (4)−0.008 (4)
C60.046 (3)0.081 (4)0.075 (5)−0.003 (3)−0.003 (4)−0.011 (4)
C1B0.043 (3)0.075 (4)0.064 (4)−0.001 (3)0.001 (3)−0.013 (4)
C2B0.050 (3)0.075 (4)0.078 (4)0.009 (3)−0.010 (4)−0.008 (4)
C3B0.053 (4)0.089 (4)0.096 (5)0.009 (4)−0.013 (4)−0.006 (4)
C4B0.049 (4)0.095 (4)0.105 (5)0.007 (4)−0.011 (4)0.001 (4)
C5B0.056 (4)0.101 (5)0.101 (5)0.010 (4)−0.012 (4)−0.007 (4)
C6B0.048 (4)0.086 (4)0.077 (5)0.001 (3)−0.003 (4)−0.016 (4)
C1C0.040 (3)0.068 (3)0.050 (3)0.001 (3)0.001 (3)−0.010 (3)
C2C0.048 (3)0.080 (3)0.071 (4)0.014 (3)0.000 (3)0.000 (3)
C3C0.059 (3)0.090 (4)0.102 (4)0.014 (3)−0.014 (4)−0.001 (3)
C4C0.051 (3)0.102 (4)0.115 (4)0.019 (3)−0.006 (3)0.001 (4)
C5C0.043 (3)0.096 (4)0.109 (5)0.003 (3)−0.007 (4)0.001 (4)
C6C0.045 (3)0.078 (3)0.082 (4)0.002 (3)−0.007 (3)−0.003 (3)
C70.039 (2)0.0454 (18)0.0400 (16)−0.0063 (15)0.0060 (14)−0.0034 (14)
C80.061 (3)0.0448 (17)0.0503 (19)−0.0038 (17)0.0025 (18)−0.0024 (15)
C90.077 (3)0.054 (2)0.060 (2)−0.009 (2)0.000 (2)0.0094 (17)
C100.065 (3)0.068 (2)0.0488 (19)−0.013 (2)0.0013 (18)0.0137 (17)
C110.064 (3)0.065 (2)0.0410 (18)−0.0041 (19)0.0078 (17)−0.0046 (17)
C120.053 (2)0.0448 (19)0.0410 (17)0.0009 (17)0.0072 (15)0.0000 (15)
C7B0.051 (6)0.046 (5)0.042 (5)−0.005 (5)0.008 (5)−0.005 (4)
C8B0.057 (6)0.051 (5)0.047 (4)−0.003 (5)0.007 (5)−0.002 (5)
C9B0.070 (5)0.059 (4)0.055 (4)−0.008 (5)0.005 (5)0.007 (4)
C10B0.068 (6)0.065 (5)0.048 (5)−0.002 (5)0.009 (5)0.003 (4)
C11B0.059 (6)0.058 (5)0.044 (5)0.001 (5)0.009 (5)−0.003 (5)
C12B0.052 (5)0.051 (5)0.041 (4)0.000 (5)0.009 (5)−0.006 (4)
C130.0462 (16)0.0366 (13)0.0273 (13)0.0028 (12)−0.0012 (11)−0.0007 (11)
C140.0413 (14)0.0286 (12)0.0258 (12)−0.0027 (10)0.0009 (11)0.0035 (10)
C150.0463 (15)0.0312 (12)0.0290 (13)−0.0029 (11)0.0011 (11)0.0056 (10)
C160.0578 (18)0.0384 (14)0.0341 (15)−0.0083 (13)−0.0032 (12)0.0119 (12)
C170.075 (2)0.0459 (16)0.0225 (13)−0.0131 (14)0.0001 (13)0.0025 (12)
C180.088 (2)0.0335 (14)0.0309 (15)−0.0065 (14)0.0042 (14)−0.0035 (11)
C190.0645 (18)0.0290 (12)0.0261 (13)−0.0012 (12)0.0006 (12)0.0000 (10)
C200.090 (2)0.0353 (14)0.0467 (17)0.0146 (15)0.0050 (16)0.0089 (13)
C210.0525 (17)0.0326 (13)0.0197 (12)−0.0025 (12)0.0021 (11)−0.0010 (10)
C220.0532 (19)0.0486 (16)0.0430 (16)−0.0055 (14)0.0026 (13)0.0022 (13)
C230.065 (2)0.066 (2)0.067 (2)−0.0211 (17)0.0168 (17)−0.0008 (17)
C240.105 (3)0.0478 (18)0.0497 (19)−0.0274 (19)0.0251 (19)−0.0001 (15)
C250.103 (3)0.0338 (15)0.0310 (15)−0.0033 (16)0.0081 (16)0.0023 (12)
C260.0657 (18)0.0327 (13)0.0261 (13)0.0003 (12)0.0022 (12)0.0004 (10)
C270.0474 (19)0.075 (2)0.100 (3)0.0043 (17)0.0044 (18)0.018 (2)

Geometric parameters (Å, °)

S1—P11.950 (1)C9—H9A0.9500
P1—C1C1.790 (5)C10—C111.371 (4)
P1—C7B1.806 (9)C10—H10A0.9500
P1—C131.812 (3)C11—C121.385 (4)
P1—C11.816 (6)C11—H11A0.9500
P1—C71.822 (3)C12—H12A0.9500
P1—C1B1.843 (7)C7B—C12B1.378 (8)
P2—C211.837 (2)C7B—C8B1.380 (8)
P2—C141.844 (2)C8B—C9B1.389 (8)
P2—C131.852 (3)C8B—H8BA0.9500
C1—C21.380 (7)C9B—C10B1.365 (8)
C1—C61.387 (7)C9B—H9BA0.9500
C2—C31.379 (7)C10B—C11B1.367 (8)
C2—H2A0.9500C10B—H10B0.9500
C3—C41.369 (7)C11B—C12B1.386 (8)
C3—H3A0.9500C11B—H11B0.9500
C4—C51.369 (7)C12B—H12B0.9500
C4—H4A0.9500C13—H13A0.9900
C5—C61.383 (8)C13—H13B0.9900
C5—H5A0.9500C14—C191.380 (3)
C6—H6A0.9500C14—C151.401 (3)
C1B—C2B1.386 (7)C15—C161.391 (3)
C1B—C6B1.397 (7)C15—C201.502 (3)
C2B—C3B1.377 (8)C16—C171.367 (4)
C2B—H2BA0.9500C16—H16A0.9500
C3B—C4B1.375 (8)C17—C181.381 (4)
C3B—H3BA0.9500C17—H17A0.9500
C4B—C5B1.367 (8)C18—C191.379 (3)
C4B—H4BA0.9500C18—H18A0.9500
C5B—C6B1.376 (8)C19—H19A0.9500
C5B—H5BA0.9500C20—H20A0.9800
C6B—H6BA0.9500C20—H20B0.9800
C1C—C2C1.367 (6)C20—H20C0.9800
C1C—C6C1.384 (6)C21—C261.388 (3)
C2C—C3C1.385 (7)C21—C221.400 (4)
C2C—H2CA0.9500C22—C231.394 (4)
C3C—C4C1.367 (7)C22—C271.499 (4)
C3C—H3CA0.9500C23—C241.370 (5)
C4C—C5C1.371 (7)C23—H23A0.9500
C4C—H4CA0.9500C24—C251.363 (4)
C5C—C6C1.376 (7)C24—H24A0.9500
C5C—H5CA0.9500C25—C261.373 (4)
C6C—H6CA0.9500C25—H25A0.9500
C7—C121.383 (4)C26—H26A0.9500
C7—C81.387 (4)C27—H27A0.9800
C8—C91.386 (4)C27—H27B0.9800
C8—H8A0.9500C27—H27C0.9800
C9—C101.364 (4)
C1C—P1—C7B89.6 (8)C8—C9—H9A120.0
C1C—P1—C13107.2 (3)C9—C10—C11120.1 (3)
C7B—P1—C13109.5 (8)C9—C10—H10A119.9
C7B—P1—C191.1 (9)C11—C10—H10A119.9
C13—P1—C1104.5 (4)C10—C11—C12120.4 (3)
C1C—P1—C7104.4 (2)C10—C11—H11A119.8
C13—P1—C7106.15 (13)C12—C11—H11A119.8
C1—P1—C7106.0 (5)C7—C12—C11120.3 (3)
C7B—P1—C1B99.6 (10)C7—C12—H12A119.9
C13—P1—C1B99.7 (6)C11—C12—H12A119.9
C7—P1—C1B114.5 (6)C12B—C7B—C8B120.8 (10)
C1C—P1—S1112.6 (2)C12B—C7B—P1124.8 (14)
C7B—P1—S1121.6 (7)C8B—C7B—P1113.8 (12)
C13—P1—S1113.40 (9)C7B—C8B—C9B118.9 (10)
C1—P1—S1113.6 (4)C7B—C8B—H8BA120.5
C7—P1—S1112.50 (12)C9B—C8B—H8BA120.5
C1B—P1—S1109.9 (6)C10B—C9B—C8B120.1 (11)
C21—P2—C14100.23 (10)C10B—C9B—H9BA120.0
C21—P2—C13100.70 (11)C8B—C9B—H9BA120.0
C14—P2—C13100.94 (11)C9B—C10B—C11B121.1 (12)
C2—C1—C6117.0 (7)C9B—C10B—H10B119.5
C2—C1—P1127.3 (8)C11B—C10B—H10B119.5
C6—C1—P1115.7 (8)C10B—C11B—C12B119.7 (11)
C3—C2—C1123.8 (8)C10B—C11B—H11B120.2
C3—C2—H2A118.1C12B—C11B—H11B120.2
C1—C2—H2A118.1C7B—C12B—C11B119.4 (11)
C4—C3—C2117.2 (8)C7B—C12B—H12B120.3
C4—C3—H3A121.4C11B—C12B—H12B120.3
C2—C3—H3A121.4P1—C13—P2114.33 (13)
C5—C4—C3121.3 (9)P1—C13—H13A108.7
C5—C4—H4A119.3P2—C13—H13A108.7
C3—C4—H4A119.3P1—C13—H13B108.7
C4—C5—C6120.3 (8)P2—C13—H13B108.7
C4—C5—H5A119.8H13A—C13—H13B107.6
C6—C5—H5A119.8C19—C14—C15119.7 (2)
C5—C6—C1120.3 (8)C19—C14—P2120.73 (18)
C5—C6—H6A119.9C15—C14—P2119.56 (18)
C1—C6—H6A119.9C16—C15—C14118.2 (2)
C2B—C1B—C6B111.8 (7)C16—C15—C20119.8 (2)
C2B—C1B—P1121.8 (10)C14—C15—C20122.0 (2)
C6B—C1B—P1126.4 (10)C17—C16—C15121.5 (2)
C3B—C2B—C1B124.9 (9)C17—C16—H16A119.3
C3B—C2B—H2BA117.6C15—C16—H16A119.3
C1B—C2B—H2BA117.6C16—C17—C18120.2 (2)
C4B—C3B—C2B120.4 (9)C16—C17—H17A119.9
C4B—C3B—H3BA119.8C18—C17—H17A119.9
C2B—C3B—H3BA119.8C19—C18—C17119.2 (2)
C5B—C4B—C3B117.7 (9)C19—C18—H18A120.4
C5B—C4B—H4BA121.1C17—C18—H18A120.4
C3B—C4B—H4BA121.1C18—C19—C14121.2 (2)
C4B—C5B—C6B120.1 (9)C18—C19—H19A119.4
C4B—C5B—H5BA119.9C14—C19—H19A119.4
C6B—C5B—H5BA119.9C15—C20—H20A109.5
C5B—C6B—C1B125.1 (9)C15—C20—H20B109.5
C5B—C6B—H6BA117.5H20A—C20—H20B109.5
C1B—C6B—H6BA117.5C15—C20—H20C109.5
C2C—C1C—C6C121.7 (6)H20A—C20—H20C109.5
C2C—C1C—P1122.0 (6)H20B—C20—H20C109.5
C6C—C1C—P1116.2 (5)C26—C21—C22118.2 (2)
C1C—C2C—C3C118.6 (6)C26—C21—P2124.4 (2)
C1C—C2C—H2CA120.7C22—C21—P2117.34 (19)
C3C—C2C—H2CA120.7C23—C22—C21118.8 (3)
C4C—C3C—C2C119.2 (7)C23—C22—C27119.4 (3)
C4C—C3C—H3CA120.4C21—C22—C27121.9 (2)
C2C—C3C—H3CA120.4C24—C23—C22121.5 (3)
C3C—C4C—C5C122.7 (7)C24—C23—H23A119.2
C3C—C4C—H4CA118.6C22—C23—H23A119.2
C5C—C4C—H4CA118.6C25—C24—C23119.7 (3)
C4C—C5C—C6C118.0 (7)C25—C24—H24A120.1
C4C—C5C—H5CA121.0C23—C24—H24A120.1
C6C—C5C—H5CA121.0C24—C25—C26119.9 (3)
C5C—C6C—C1C119.7 (6)C24—C25—H25A120.1
C5C—C6C—H6CA120.1C26—C25—H25A120.1
C1C—C6C—H6CA120.1C25—C26—C21121.8 (3)
C12—C7—C8118.7 (3)C25—C26—H26A119.1
C12—C7—P1120.2 (3)C21—C26—H26A119.1
C8—C7—P1121.2 (2)C22—C27—H27A109.5
C9—C8—C7120.5 (3)C22—C27—H27B109.5
C9—C8—H8A119.7H27A—C27—H27B109.5
C7—C8—H8A119.7C22—C27—H27C109.5
C10—C9—C8120.1 (3)H27A—C27—H27C109.5
C10—C9—H9A120.0H27B—C27—H27C109.5
C1C—P1—C1—C2135 (12)C1—P1—C7—C8126.1 (5)
C7B—P1—C1—C278.6 (10)C1B—P1—C7—C8127.8 (6)
C13—P1—C1—C2−31.9 (8)S1—P1—C7—C81.4 (2)
C7—P1—C1—C280.0 (8)C12—C7—C8—C90.1 (2)
C1B—P1—C1—C2−89 (6)P1—C7—C8—C9179.4 (2)
S1—P1—C1—C2−156.0 (6)C7—C8—C9—C100.0 (2)
C1C—P1—C1—C6−44 (11)C8—C9—C10—C110.0 (4)
C7B—P1—C1—C6−100.8 (11)C9—C10—C11—C12−0.2 (5)
C13—P1—C1—C6148.7 (7)C8—C7—C12—C11−0.2 (4)
C7—P1—C1—C6−99.4 (8)P1—C7—C12—C11−179.5 (3)
C1B—P1—C1—C691 (6)C10—C11—C12—C70.2 (5)
S1—P1—C1—C624.6 (9)C1C—P1—C7B—C12B−77.1 (12)
C6—C1—C2—C3−0.4 (3)C13—P1—C7B—C12B31.0 (13)
P1—C1—C2—C3−179.9 (11)C1—P1—C7B—C12B−74.8 (13)
C1—C2—C3—C4−0.4 (3)C7—P1—C7B—C12B110 (3)
C2—C3—C4—C50.8 (7)C1B—P1—C7B—C12B−73.0 (13)
C3—C4—C5—C6−0.3 (9)S1—P1—C7B—C12B166.4 (11)
C4—C5—C6—C1−0.6 (9)C1C—P1—C7B—C8B111.5 (13)
C2—C1—C6—C50.9 (6)C13—P1—C7B—C8B−140.4 (12)
P1—C1—C6—C5−179.6 (9)C1—P1—C7B—C8B113.8 (14)
C1C—P1—C1B—C2B93 (3)C7—P1—C7B—C8B−61 (3)
C7B—P1—C1B—C2B70.6 (11)C1B—P1—C7B—C8B115.6 (14)
C13—P1—C1B—C2B−41.3 (8)S1—P1—C7B—C8B−5.0 (17)
C1—P1—C1B—C2B83 (6)C12B—C7B—C8B—C9B0.1 (3)
C7—P1—C1B—C2B71.6 (8)P1—C7B—C8B—C9B171.9 (15)
S1—P1—C1B—C2B−160.7 (6)C7B—C8B—C9B—C10B0.0 (3)
C1C—P1—C1B—C6B−88 (3)C8B—C9B—C10B—C11B0.0 (7)
C7B—P1—C1B—C6B−110.7 (14)C9B—C10B—C11B—C12B−0.1 (9)
C13—P1—C1B—C6B137.4 (11)C8B—C7B—C12B—C11B−0.2 (7)
C1—P1—C1B—C6B−99 (6)P1—C7B—C12B—C11B−171.0 (17)
C7—P1—C1B—C6B−109.7 (11)C10B—C11B—C12B—C7B0.2 (9)
S1—P1—C1B—C6B18.0 (14)C1C—P1—C13—P2175.8 (2)
C6B—C1B—C2B—C3B0.3 (3)C7B—P1—C13—P280.0 (8)
P1—C1B—C2B—C3B179.2 (13)C1—P1—C13—P2176.5 (5)
C1B—C2B—C3B—C4B0.0 (3)C7—P1—C13—P264.67 (17)
C2B—C3B—C4B—C5B0.1 (7)C1B—P1—C13—P2−176.1 (6)
C3B—C4B—C5B—C6B−0.4 (9)S1—P1—C13—P2−59.34 (14)
C4B—C5B—C6B—C1B0.8 (10)C21—P2—C13—P1168.44 (12)
C2B—C1B—C6B—C5B−0.7 (7)C14—P2—C13—P1−88.82 (14)
P1—C1B—C6B—C5B−179.5 (14)C21—P2—C14—C1945.2 (2)
C7B—P1—C1C—C2C121.0 (9)C13—P2—C14—C19−57.9 (2)
C13—P1—C1C—C2C10.7 (5)C21—P2—C14—C15−134.2 (2)
C1—P1—C1C—C2C−3(12)C13—P2—C14—C15122.7 (2)
C7—P1—C1C—C2C123.0 (5)C19—C14—C15—C161.4 (4)
C1B—P1—C1C—C2C−37 (3)P2—C14—C15—C16−179.21 (19)
S1—P1—C1C—C2C−114.7 (4)C19—C14—C15—C20−178.1 (3)
C7B—P1—C1C—C6C−62.1 (9)P2—C14—C15—C201.3 (4)
C13—P1—C1C—C6C−172.5 (4)C14—C15—C16—C17−0.4 (4)
C1—P1—C1C—C6C174 (12)C20—C15—C16—C17179.1 (3)
C7—P1—C1C—C6C−60.1 (5)C15—C16—C17—C18−0.3 (4)
C1B—P1—C1C—C6C140 (3)C16—C17—C18—C190.0 (4)
S1—P1—C1C—C6C62.2 (5)C17—C18—C19—C141.1 (4)
C6C—C1C—C2C—C3C0.0 (3)C15—C14—C19—C18−1.8 (4)
P1—C1C—C2C—C3C176.6 (5)P2—C14—C19—C18178.8 (2)
C1C—C2C—C3C—C4C−0.2 (3)C14—P2—C21—C26−98.9 (2)
C2C—C3C—C4C—C5C0.6 (6)C13—P2—C21—C264.4 (2)
C3C—C4C—C5C—C6C−0.8 (8)C14—P2—C21—C2283.8 (2)
C4C—C5C—C6C—C1C0.5 (8)C13—P2—C21—C22−172.85 (19)
C2C—C1C—C6C—C5C−0.1 (6)C26—C21—C22—C23−0.7 (4)
P1—C1C—C6C—C5C−177.0 (5)P2—C21—C22—C23176.7 (2)
C1C—P1—C7—C12−56.9 (3)C26—C21—C22—C27178.5 (3)
C7B—P1—C7—C12−49 (3)P2—C21—C22—C27−4.1 (4)
C13—P1—C7—C1256.2 (3)C21—C22—C23—C240.0 (5)
C1—P1—C7—C12−54.6 (5)C27—C22—C23—C24−179.1 (3)
C1B—P1—C7—C12−52.8 (7)C22—C23—C24—C250.9 (5)
S1—P1—C7—C12−179.3 (2)C23—C24—C25—C26−1.2 (4)
C1C—P1—C7—C8123.7 (3)C24—C25—C26—C210.6 (4)
C7B—P1—C7—C8132 (3)C22—C21—C26—C250.4 (4)
C13—P1—C7—C8−123.2 (2)P2—C21—C26—C25−176.84 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2633).

References

  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SAINT and XCIF Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carmalt, C. J., Cowley, A. H., Decken, A., Lawson, Y. G. & Norman, N. C. (1996). Acta Cryst. C52, 931–933.
  • CrystalMaker (1994). CrystalMaker CrystalMaker Software Ltd, Oxford, England; URL: www.CrystalMakercom.
  • Grim, S. O. & Mitchell, J. D. (1977). Inorg. Chem.16, 1762–1770.
  • Grim, S. O., Smith, P. H., Colquhoun, I. J. & McFarlane, W. (1980). Inorg. Chem.19, 3195–3198.
  • Jones, P. G., Fischer, A. K., Krill, J. & Schmutzler, R. (2002). Acta Cryst. E58, o1016–o1017.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography