PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2537.
Published online 2009 September 26. doi:  10.1107/S1600536809037969
PMCID: PMC2970353

2-[(2,6-Diethyl­phen­yl)imino­meth­yl]-N-(2-methoxy­phen­yl)aniline

Abstract

The title anilide–imine compound, C24H26N2O, features an intra­molecular N—H(...)N hydrogen bond involving the imine and anilide groups to generate an S(6) ring motif. The mol­ecule displays an E configuration about the imine C=N double bond, with the dihedral angle between the two benzene rings being 86.5°. The packing is stabilized by three different C—H(...)π inter­actions.

Related literature

For related background on anilido–imine complexes, see: Liu et al. (2005 [triangle], 2006 [triangle]); Ren et al. (2007 [triangle]); Su et al. (2007 [triangle]); Yao et al. (2008 [triangle]); Wang et al. (2006 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2537-scheme1.jpg

Experimental

Crystal data

  • C24H26N2O
  • M r = 358.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2537-efi1.jpg
  • a = 12.930 (3) Å
  • b = 7.4757 (15) Å
  • c = 21.303 (4) Å
  • β = 97.88 (3)°
  • V = 2039.7 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 K
  • 0.44 × 0.40 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.969, T max = 0.986
  • 19406 measured reflections
  • 4670 independent reflections
  • 3515 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.108
  • S = 1.06
  • 4670 reflections
  • 252 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037969/fl2258sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037969/fl2258Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant Nos. 20772044 and 20674024). One of the authors (QS) is grateful for support from Jilin University.

supplementary crystallographic information

Comment

A chelating anilide-imine compound has recently attracted increasing attention because it has a similar framwork and combination of steric and electronic characterics found in β-diketiminate and salicyaldiminato ligands which have been extensively researched in coordination chemistry and catalysis. (Wang et al., 2006) We have recently reported the luminescent properties of a series of zinc(II) (Su et al., 2007), aluminium(III) (Liu et al., 2005; 2006) and boron(III) (Ren et al., 2007) complexes with chelating anilido-imine ligands and catalytical properties of aluminium(III) (Yao et al., 2008) for the polymerization of ε-caprolactone. Good results have been obtained. As a part of our study, the preparation and crystal structure of the new anilido-imine title compound (I) (Fig. 1), is reported.

The bond lengths and angles are within normal ranges. The C7=N2 [1.2730 (15) Å] bond length is comparable to those found in similar anilido-imine compounds, such as {2-[(2,6-diethyl-phenylimino)-methyl]-phenyl}- (2,4-dimethyl-quinolin-7-yl)-amine [1.267 (4), 1.275 (4) Å] (Su et al., 2007) and {2-[(2,6-methyl-phenylimino)-methyl]-phenyl}- (2,4-dimethyl-quinolin-7-yl)-amine [1.271 (2) Å] (Su et al., 2007). The molecule adopts an E configuration about the central C=N bond. The dihedral angles between the central benzene ring (C1—C6) and the two outer benzene rings of the anilido-imine compound are 86.5° (C8—C13) and 54.2° (C18—C23). The dihedral angle between the C8—C13 and C18—C23 phenyl rings is 113.4°. An intramolecular N1—H1···N2 hydrogen bond forms a six-membered ring, generating an S(6) motif (Bernstein et al., 1995).

In the packing of the crystal, there exists three different types of C—H···π interactions (Fig.2 and Table1). The C—H···π interactions involving H10 form chains (Fig.2a). The additional C—H···π interactions through H5 and H16a interlink these chains (Fig.2b, and Fig.2c).

Experimental

Preligand (2,6-Diethyl-phenyl)-(2-fluoro-benzylidene)-amine [ortho-C6H4(CH=NC6H3Et2-2,6)] was synthesized according to a literature method (Su et al., 2007). A solution of nBuLi (1.60 mol/L, 9.2 mmol) in n-hexane was added to a solution of 4-methoxy-phenylamine (1.14 g, 9.2 mmol) in THF (20 ml) at -78 °C. The mixture was allowed to warm to room temperature and stirred for additional 4 h. The resulting solution was transferred into a solution of ortho-C6H4(CH=NC6H3Et2-2,6) (2.36 g, 9.2 mmol) in THF at 25 °C. After stirring for two days, the reaction was quenched with H2O (20 ml). The organic phase was evaporated to dryness to give the crude product as a brown oil that was purified by column chromatography on silica gel with ethyl acetate/ petroleum ether (1:34 in volume) as eluent. The pure product as yellow crystals (1.72 g, 52%) suitable for data collection were obtained after concentrating the solution. Anal. Calcd. for C24H26N2O (358.48): C 80.41, H 7.36, N 7.81; Found: C 80.26, H 7.25, N 7.90%. 1H NMR (500 MHz, CDCl3, 298 K) δ (p.p.m.): 1.20 (t, 2 x 3H, J = 7.5 Hz, CH3CH2), 2.60 (q, 2 x 2H, J = 7.5 Hz, CH3CH2), 3.86 (s, 3H, O—CH3), 6.80 (t, 1H, J = 6.5 Hz), 6.95 (d, 2H, J = 7.5 Hz), 7.10 (d, 1H, J = 6.0 Hz), 7.16 (br, 2H), 7.20 (d, 1H, J = 9.0 Hz), 7.28 (d, 3H, J = 3.5 Hz), 7.37 (d, 1H, J = 7.0 Hz), 8.76 (s, 1H, CH=N), 10.99 (br, 1H, NH).

Refinement

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic and imine carbon), 0.97 (methylene) and 0.96 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C). The atom H1 was located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.
View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates an intramolecular hydrogen bond.
Fig. 2.
Packing of the molecule of (I) showing the different C—H···π interactions. Cg1: the centroid of the benzene ring (C8—C13); Cg2: the centroid of the benzene ring (C18—C23); Cg3: the centroid of the ...

Crystal data

C24H26N2OF(000) = 768
Mr = 358.47Dx = 1.167 Mg m3
Monoclinic, P21/cMelting point: not measured K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.930 (3) ÅCell parameters from 14731 reflections
b = 7.4757 (15) Åθ = 3.2–27.5°
c = 21.303 (4) ŵ = 0.07 mm1
β = 97.88 (3)°T = 295 K
V = 2039.7 (7) Å3Block, yellow
Z = 40.44 × 0.40 × 0.19 mm

Data collection

Rigaku R-AXIS RAPID diffractometer4670 independent reflections
Radiation source: fine-focus sealed tube3515 reflections with I > 2σ(I)
graphiteRint = 0.035
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −16→16
Tmin = 0.969, Tmax = 0.986k = −9→9
19406 measured reflectionsl = −27→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2475P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4670 reflectionsΔρmax = 0.19 e Å3
252 parametersΔρmin = −0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0251 (17)

Special details

Experimental. (See detailed section in the paper)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.52847 (8)1.56960 (13)0.17089 (5)0.0608 (3)
N10.28321 (8)0.98441 (15)0.08469 (5)0.0460 (3)
N20.12969 (8)0.75355 (13)0.10555 (5)0.0405 (2)
C10.28918 (8)0.88995 (15)0.03007 (5)0.0363 (3)
C20.22193 (8)0.74272 (15)0.01420 (5)0.0367 (3)
C30.22900 (9)0.64858 (17)−0.04164 (6)0.0436 (3)
H30.18400.5530−0.05230.052*
C40.30038 (10)0.69250 (19)−0.08147 (6)0.0507 (3)
H40.30370.6282−0.11850.061*
C50.36708 (10)0.83456 (19)−0.06505 (6)0.0500 (3)
H50.41640.8647−0.09120.060*
C60.36198 (9)0.93198 (17)−0.01092 (6)0.0443 (3)
H60.40751.0274−0.00120.053*
C70.14318 (9)0.68530 (16)0.05253 (5)0.0390 (3)
H70.09940.59180.03720.047*
C80.04576 (9)0.68824 (16)0.13614 (5)0.0392 (3)
C90.06378 (10)0.54991 (16)0.18027 (6)0.0455 (3)
C10−0.01957 (12)0.49231 (18)0.21017 (7)0.0554 (4)
H10−0.00960.39970.23950.067*
C11−0.11638 (12)0.5703 (2)0.19697 (7)0.0582 (4)
H11−0.17140.52930.21700.070*
C12−0.13204 (10)0.7088 (2)0.15432 (7)0.0535 (4)
H12−0.19780.76100.14610.064*
C13−0.05162 (9)0.77272 (17)0.12316 (6)0.0439 (3)
C140.17116 (13)0.4706 (2)0.19727 (7)0.0612 (4)
H14A0.20260.45390.15890.073*
H14B0.16490.35400.21640.073*
C150.24158 (13)0.5868 (3)0.24255 (9)0.0841 (5)
H15A0.25060.70060.22310.126*
H15B0.30820.52960.25280.126*
H15C0.21070.60410.28060.126*
C16−0.06704 (11)0.9317 (2)0.07983 (7)0.0566 (4)
H16A−0.14120.95600.07000.068*
H16B−0.04080.90330.04050.068*
C17−0.01226 (13)1.0986 (2)0.10827 (9)0.0700 (4)
H17A−0.04151.13280.14550.105*
H17B−0.02151.19400.07790.105*
H17C0.06091.07440.11940.105*
C180.34258 (9)1.13770 (16)0.10489 (6)0.0398 (3)
C190.39696 (10)1.14282 (17)0.16584 (6)0.0452 (3)
H190.39311.04630.19290.054*
C200.45650 (10)1.28936 (18)0.18645 (6)0.0487 (3)
H200.49201.29150.22750.058*
C210.46397 (9)1.43359 (17)0.14663 (6)0.0434 (3)
C220.40796 (10)1.43273 (17)0.08638 (6)0.0455 (3)
H220.41121.52990.05950.055*
C230.34714 (9)1.28581 (17)0.06663 (6)0.0445 (3)
H230.30831.28670.02650.053*
C240.54257 (13)1.7158 (2)0.13088 (9)0.0701 (5)
H24A0.56981.67360.09380.105*
H24B0.59081.79920.15310.105*
H24C0.47671.77390.11850.105*
H10.2406 (11)0.937 (2)0.1104 (7)0.056 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0714 (6)0.0509 (6)0.0578 (6)−0.0154 (5)0.0004 (5)−0.0115 (5)
N10.0485 (6)0.0493 (6)0.0423 (6)−0.0118 (5)0.0134 (5)−0.0073 (5)
N20.0442 (5)0.0395 (5)0.0387 (5)−0.0029 (4)0.0090 (4)0.0020 (4)
C10.0339 (5)0.0391 (6)0.0354 (6)0.0038 (4)0.0026 (4)0.0005 (5)
C20.0359 (5)0.0382 (6)0.0355 (6)0.0032 (5)0.0035 (5)0.0024 (5)
C30.0442 (6)0.0432 (7)0.0432 (6)0.0000 (5)0.0051 (5)−0.0054 (5)
C40.0533 (7)0.0565 (8)0.0442 (7)0.0027 (6)0.0135 (6)−0.0108 (6)
C50.0448 (7)0.0593 (8)0.0491 (7)0.0014 (6)0.0179 (6)−0.0019 (6)
C60.0372 (6)0.0471 (7)0.0498 (7)−0.0025 (5)0.0100 (5)−0.0018 (6)
C70.0407 (6)0.0356 (6)0.0403 (6)−0.0022 (5)0.0040 (5)0.0010 (5)
C80.0452 (6)0.0371 (6)0.0364 (6)−0.0069 (5)0.0096 (5)−0.0048 (5)
C90.0601 (7)0.0365 (6)0.0422 (7)−0.0020 (5)0.0155 (6)−0.0023 (5)
C100.0805 (10)0.0415 (7)0.0488 (7)−0.0124 (7)0.0252 (7)−0.0025 (6)
C110.0649 (9)0.0601 (9)0.0549 (8)−0.0248 (7)0.0274 (7)−0.0164 (7)
C120.0436 (7)0.0638 (9)0.0543 (8)−0.0100 (6)0.0105 (6)−0.0166 (7)
C130.0430 (6)0.0475 (7)0.0403 (6)−0.0063 (5)0.0027 (5)−0.0077 (5)
C140.0806 (10)0.0491 (8)0.0576 (9)0.0180 (7)0.0223 (8)0.0147 (7)
C150.0681 (10)0.0977 (14)0.0828 (12)0.0204 (10)−0.0036 (9)0.0036 (11)
C160.0490 (7)0.0647 (9)0.0534 (8)0.0063 (6)−0.0028 (6)0.0061 (7)
C170.0731 (10)0.0509 (9)0.0823 (11)0.0074 (7)−0.0021 (8)0.0104 (8)
C180.0384 (6)0.0414 (6)0.0404 (6)−0.0009 (5)0.0078 (5)−0.0056 (5)
C190.0549 (7)0.0443 (7)0.0369 (6)−0.0011 (6)0.0081 (5)0.0005 (5)
C200.0579 (8)0.0530 (8)0.0338 (6)−0.0018 (6)0.0009 (5)−0.0055 (5)
C210.0444 (6)0.0408 (7)0.0447 (7)−0.0008 (5)0.0057 (5)−0.0096 (5)
C220.0494 (7)0.0398 (7)0.0467 (7)0.0027 (5)0.0043 (5)0.0024 (5)
C230.0440 (6)0.0467 (7)0.0404 (6)0.0017 (5)−0.0026 (5)0.0000 (5)
C240.0739 (10)0.0446 (8)0.0899 (12)−0.0133 (7)0.0053 (9)−0.0044 (8)

Geometric parameters (Å, °)

O1—C211.3704 (15)C12—H120.9300
O1—C241.4130 (18)C13—C161.5011 (19)
N1—C11.3723 (15)C14—C151.508 (2)
N1—C181.4131 (16)C14—H14A0.9700
N1—H10.902 (14)C14—H14B0.9700
N2—C71.2730 (15)C15—H15A0.9600
N2—C81.4265 (15)C15—H15B0.9600
C1—C61.4045 (16)C15—H15C0.9600
C1—C21.4147 (16)C16—C171.519 (2)
C2—C31.3959 (16)C16—H16A0.9700
C2—C71.4545 (16)C16—H16B0.9700
C3—C41.3765 (17)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.3824 (19)C17—H17C0.9600
C4—H40.9300C18—C231.3809 (18)
C5—C61.3731 (18)C18—C191.3898 (18)
C5—H50.9300C19—C201.3758 (18)
C6—H60.9300C19—H190.9300
C7—H70.9300C20—C211.3833 (19)
C8—C91.3955 (17)C20—H200.9300
C8—C131.4019 (17)C21—C221.3846 (19)
C9—C101.3932 (18)C22—C231.3824 (18)
C9—C141.507 (2)C22—H220.9300
C10—C111.375 (2)C23—H230.9300
C10—H100.9300C24—H24A0.9600
C11—C121.374 (2)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C12—C131.3925 (18)
C21—O1—C24117.94 (11)C15—C14—H14A109.1
C1—N1—C18125.73 (10)C9—C14—H14B109.1
C1—N1—H1115.0 (9)C15—C14—H14B109.1
C18—N1—H1119.1 (9)H14A—C14—H14B107.8
C7—N2—C8118.26 (10)C14—C15—H15A109.5
N1—C1—C6122.17 (11)C14—C15—H15B109.5
N1—C1—C2119.91 (10)H15A—C15—H15B109.5
C6—C1—C2117.90 (10)C14—C15—H15C109.5
C3—C2—C1119.07 (10)H15A—C15—H15C109.5
C3—C2—C7117.53 (11)H15B—C15—H15C109.5
C1—C2—C7123.38 (10)C13—C16—C17112.94 (12)
C4—C3—C2122.20 (12)C13—C16—H16A109.0
C4—C3—H3118.9C17—C16—H16A109.0
C2—C3—H3118.9C13—C16—H16B109.0
C3—C4—C5118.36 (12)C17—C16—H16B109.0
C3—C4—H4120.8H16A—C16—H16B107.8
C5—C4—H4120.8C16—C17—H17A109.5
C6—C5—C4121.32 (11)C16—C17—H17B109.5
C6—C5—H5119.3H17A—C17—H17B109.5
C4—C5—H5119.3C16—C17—H17C109.5
C5—C6—C1121.12 (12)H17A—C17—H17C109.5
C5—C6—H6119.4H17B—C17—H17C109.5
C1—C6—H6119.4C23—C18—C19118.18 (11)
N2—C7—C2124.84 (11)C23—C18—N1122.41 (11)
N2—C7—H7117.6C19—C18—N1119.40 (11)
C2—C7—H7117.6C20—C19—C18120.62 (12)
C9—C8—C13121.95 (11)C20—C19—H19119.7
C9—C8—N2119.61 (11)C18—C19—H19119.7
C13—C8—N2118.34 (11)C19—C20—C21120.54 (12)
C10—C9—C8117.96 (12)C19—C20—H20119.7
C10—C9—C14120.89 (12)C21—C20—H20119.7
C8—C9—C14121.10 (11)O1—C21—C20115.93 (11)
C11—C10—C9121.01 (13)O1—C21—C22124.53 (12)
C11—C10—H10119.5C20—C21—C22119.54 (12)
C9—C10—H10119.5C23—C22—C21119.29 (12)
C12—C11—C10120.16 (12)C23—C22—H22120.4
C12—C11—H11119.9C21—C22—H22120.4
C10—C11—H11119.9C18—C23—C22121.73 (12)
C11—C12—C13121.45 (13)C18—C23—H23119.1
C11—C12—H12119.3C22—C23—H23119.1
C13—C12—H12119.3O1—C24—H24A109.5
C12—C13—C8117.43 (13)O1—C24—H24B109.5
C12—C13—C16121.32 (12)H24A—C24—H24B109.5
C8—C13—C16121.18 (11)O1—C24—H24C109.5
C9—C14—C15112.50 (13)H24A—C24—H24C109.5
C9—C14—H14A109.1H24B—C24—H24C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N20.902 (14)1.976 (15)2.7126 (15)137.8 (12)
C5—H5···Cg2i0.932.793.5296 (8)137
C10—H10···Cg1ii0.932.843.7651 (6)176
C16—H16A···Cg3iii0.972.823.6614 (7)146

Symmetry codes: (i) −x+1, y+3/2, −z+1/2; (ii) −x, −y−1, −z; (iii) −x, y+5/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2258).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, X.-M., Gao, W., Mu, Y., Li, G.-H., Ye, L., Xia, H., Ren, Y. & Feng, S. (2005). Organometallics, 24, 1614–1619.
  • Liu, X.-M., Xia, H., Gao, W., Ye, L., Mu, Y., Su, Q. & Ren, Y. (2006). Eur. J. Inorg. Chem. pp. 1216–1222.
  • Ren, Y., Liu, X.-M., Gao, W., Xia, H., Ye, L. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp. 1808–1814.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp 4168–4175.
  • Wang, H.-Y., Meng, X. & Jin, G.-X. (2006). Dalton Trans. pp. 2579–2585. [PubMed]
  • Yao, W., Mu, Y., Gao, A.-H., Su, Q., Liu, Y.-J. & Zhang, Y.-Y. (2008). Polymer, 49, 2486–2491.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography