PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1254–m1255.
Published online 2009 September 30. doi:  10.1107/S1600536809038434
PMCID: PMC2970350

Potassium 2-(N-hydroxy­carbamo­yl)acetate monohydrate

Abstract

The crystal structure of the title compound, K+·C3H4NO4 ·H2O, consists of potassium cations, monoanions of 2-carboxy­acetohydroxamic acid [namely 2-(N-hydroxy­carbamo­yl)acetate] and solvent water mol­ecules. The elements of the structure are united in a three-dimensional network by numerous K(...)O coordinate bonds and O—H(...)O and N—H(...)O hydrogen bonds. The coordination sphere of the K+ ions may be described as a distorted double capped octa­hedron. Bond lengths and angles are similar to those in related compounds.

Related literature

For background to hydroxamic acids in biological and coordination chemistry, see: Kaczka et al. (1962 [triangle]); Hershko et al. (1992 [triangle]); Ghio et al. (1992 [triangle]); Shao et al. (2004 [triangle]). For hydroxamic acids as versatile bridging ligands, see: Bodwin et al. (2001 [triangle]); Cutland-Van Noord et al. (2002 [triangle]). For related structures, see: Golenya et al. (2007 [triangle]); Gumienna-Kontecka et al. (2007 [triangle]); Wörl et al. (2005 [triangle]). For K—O bond lengths, see: Świątek-Kozłowska et al. (2000 [triangle]); Mokhir et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1254-scheme1.jpg

Experimental

Crystal data

  • K+·C3H4NO4 ·H2O
  • M r = 175.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1254-efi5.jpg
  • a = 7.457 (1) Å
  • b = 13.002 (3) Å
  • c = 6.816 (1) Å
  • β = 105.41 (3)°
  • V = 637.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 100 K
  • 0.25 × 0.20 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.829, T max = 0.914
  • 3974 measured reflections
  • 1498 independent reflections
  • 1398 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.064
  • S = 1.10
  • 1498 reflections
  • 107 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809038434/bv2123sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038434/bv2123Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/42–2008).

supplementary crystallographic information

Comment

Hydroxamic acids represent an important class of chelating agents and enzyme inhibitors (Kaczka et al., 1962; Hershko et al., 1992; Ghio et al., 1992; Shao et al., 2004). In recent years hydroxamic acids have also been widely used in coordination chemistry as versatile bridging ligands able to produce multinuclear compounds containing a large number of metal ions, such as metallacrowns (Bodwin et al., 2001; Cutland-Van Noord et al., 2002). Recently we reported that 2-carboxyacetohydroxamic acid is an efficient ligand for obtaining 12-metallacrown-4 complexes with copper(II) ions which can be used as pentanuclear building blocks for preparation of one-dimensional coordination polymers (Gumienna-Kontecka et al., 2007). The present investigation is aimed at the study of the molecular structure of the title compound (I) which is a suitable ligand for preparation of polynuclear complexes and coordination polymers.

The atom-numbering scheme of compound (I) is shown in Fig. 1. The crystal structure of (I) is ionic and consists of potassium cations, monoanions of 2-carboxyacetohydroxamic acid and solvate water molecules. The elements of the structure are united in three-dimensional-network by numerous K···O coordination bonds and the O—H···O and N—H···O hydrogen bonds (Fig. 2,. Table 1).

The residue of 2-carboxyacetohydroxamic acid is a monoanion bearing the deprotonated carboxylic group with the hydroxamic function remaining protonated. The anion exhibits C—O, N—O, C—N bond lengths which are typical for carboxylic and hydroxamic groups (Wörl et al., 2005, Golenya et al., 2007). The conformation of monoanion of 2-carboxyacetohydroxamic acid is significantly non-planar due to the presence of the flexible C—CH2—C moiety uniting two planar hydroxamic and carboxylic fragments. The mentioned groups are disposed nearly perpendicularly; the dihedral angle between their planes is equal to 86.37 (5)o.

The potassium cation exhibits coordination number 8, and its coordination polyhedron can be considered as severely distorted double capped octahedron. Its coordination environment is formed by two solvate water molecules and six oxygen atoms of monoanion of 2-carboxyacetohydroxamic acid belonging to the deprotonated carboxylic groups (O(1)) and both oxygen atoms of the hydroxamic functions(O(3) and O(4)) belonging to the different translational anions. Each potassium cation has in its coordination sphere the oxygen atoms belonging to five different translational monoanions of 2-carboxyacetohydroxamic acid. The K—O bond lengths lie in the range 2.711 (1) - 3.058 (1) Å which is normal for potassium cations (Świątek-Kozłowska et al., 2000; Mokhir et al., 2002).

Experimental

I was obtained as white powder precipitate by addition of 1 equiv. of KOH (1 M aqueous solution) to warm solution of 2-carboxyacetohydroxamic acid (1.19 g, 10 mmol) in water (40 ml) with consequent reduction in volume of the obtained solution. Single crystals suitable for X-ray analysis were grown by slow isothermal evaporation of aqueous solution at room temperature. Anal. For C3H6NO5K (175.18) calcd.: C - 20.57, H - 3.45, N - 8.00. Found: C - 20.7, H - 3.5, N - 7.8. - IR (cm-1): 1062 (ν(N—O)), 1380 (νs(COO-)), 1580 (νas(COO-)), 1672 (ν(C=O) Amide I).

Refinement

The O—H and N—H H atoms were located from the difference Fourier map and refined isotropically. The methylene H atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.975–0.98 Å, and Uiso = 1.2 Ueq(parent atom).

Figures

Fig. 1.
A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. The hydrogen bonding is shown by dashed lines [symmetry codes: (i) 1 + x, y, z; (ii) x, 1.5 - y, -1/2 + z; (iii) ...
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

K+·C3H4NO4·H2OF(000) = 360
Mr = 175.19Dx = 1.826 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 567 reflections
a = 7.457 (1) Åθ = 3.5–27.5°
b = 13.002 (3) ŵ = 0.80 mm1
c = 6.816 (1) ÅT = 100 K
β = 105.41 (3)°Needle, colourless
V = 637.1 (2) Å30.25 × 0.20 × 0.12 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1498 independent reflections
Radiation source: fine-focus sealed tube1398 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 28.4°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −9→9
Tmin = 0.829, Tmax = 0.914k = −17→17
3974 measured reflectionsl = −6→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0348P)2 + 0.2753P] where P = (Fo2 + 2Fc2)/3
1498 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
K10.50362 (4)0.64050 (2)0.09788 (4)0.01167 (10)
O1−0.30644 (12)0.82467 (7)0.01504 (14)0.0127 (2)
O2−0.09437 (12)0.92917 (7)0.20776 (13)0.01173 (19)
O30.27158 (12)0.76799 (7)0.24610 (13)0.01273 (19)
O40.46616 (12)0.93401 (7)0.18090 (13)0.0122 (2)
O1W0.77186 (13)0.51272 (8)0.03917 (15)0.0155 (2)
N10.28881 (15)0.90970 (9)0.06042 (16)0.0110 (2)
C1−0.14337 (17)0.85843 (9)0.07756 (18)0.0091 (2)
C20.00201 (17)0.81466 (10)−0.02077 (18)0.0112 (2)
H2A−0.02200.7419−0.04640.013*
H2B−0.01100.8482−0.15100.013*
C30.19948 (16)0.82835 (10)0.10799 (18)0.0096 (2)
H4O0.543 (3)0.8999 (18)0.124 (3)0.031 (5)*
H1N0.243 (3)0.9497 (15)−0.027 (3)0.024 (5)*
H1W0.863 (3)0.4904 (18)0.125 (3)0.036 (6)*
H2W0.807 (3)0.5327 (18)−0.062 (4)0.043 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
K10.01153 (15)0.01230 (16)0.01062 (15)0.00162 (9)0.00197 (10)−0.00076 (9)
O10.0095 (4)0.0153 (4)0.0134 (4)−0.0009 (3)0.0029 (3)−0.0024 (3)
O20.0112 (4)0.0130 (4)0.0108 (4)0.0004 (3)0.0024 (3)−0.0031 (3)
O30.0131 (4)0.0140 (4)0.0112 (4)0.0013 (3)0.0034 (3)0.0021 (3)
O40.0078 (4)0.0165 (5)0.0118 (4)−0.0021 (3)0.0020 (3)−0.0035 (3)
O1W0.0120 (4)0.0218 (5)0.0130 (5)0.0038 (4)0.0041 (4)0.0064 (4)
N10.0096 (5)0.0121 (5)0.0097 (5)0.0001 (4)−0.0002 (4)0.0006 (4)
C10.0103 (5)0.0096 (6)0.0070 (5)0.0016 (4)0.0018 (4)0.0026 (4)
C20.0104 (5)0.0133 (6)0.0099 (5)−0.0001 (4)0.0031 (4)−0.0029 (4)
C30.0096 (5)0.0113 (6)0.0092 (5)0.0009 (4)0.0047 (4)−0.0028 (4)

Geometric parameters (Å, °)

K1—O1W2.7105 (11)O4—N11.3951 (14)
K1—O32.7734 (10)O4—H4O0.89 (2)
K1—O3i2.8202 (12)O1W—H1W0.82 (2)
K1—O1Wii2.8358 (12)O1W—H2W0.84 (3)
K1—O1iii2.8558 (12)N1—C31.3351 (17)
K1—O1iv2.9128 (11)N1—H1N0.79 (2)
K1—O4i2.9448 (10)C1—C21.5279 (17)
K1—O4v3.0580 (11)C2—C31.5111 (17)
O1—C11.2560 (15)C2—H2A0.9700
O2—C11.2628 (15)C2—H2B0.9700
O3—C31.2337 (16)
O1W—K1—O3167.55 (3)O3i—K1—O4v137.54 (3)
O1W—K1—O3i116.31 (3)O1Wii—K1—O4v59.85 (3)
O3—K1—O3i75.90 (2)O1iii—K1—O4v72.32 (3)
O1W—K1—O1Wii91.10 (3)O1iv—K1—O4v147.29 (3)
O3—K1—O1Wii94.15 (3)O4i—K1—O4v99.36 (3)
O3i—K1—O1Wii77.83 (4)N1—O4—H4O104.5 (13)
O1W—K1—O1iii93.09 (4)H1W—O1W—H2W108 (2)
O3—K1—O1iii74.63 (3)C3—N1—O4119.52 (10)
O3i—K1—O1iii144.05 (3)C3—N1—H1N124.0 (14)
O1Wii—K1—O1iii124.30 (3)O4—N1—H1N116.1 (14)
O1W—K1—O1iv93.40 (3)O1—C1—O2124.49 (11)
O3—K1—O1iv87.81 (3)O1—C1—C2117.18 (11)
O3i—K1—O1iv73.05 (3)O2—C1—C2118.23 (11)
O1Wii—K1—O1iv149.40 (3)C3—C2—C1113.38 (10)
O1iii—K1—O1iv85.67 (3)C3—C2—H2A108.9
O1W—K1—O4i62.64 (4)C1—C2—H2A108.9
O3—K1—O4i129.78 (3)C3—C2—H2B108.9
O3i—K1—O4i55.86 (3)C1—C2—H2B108.9
O1Wii—K1—O4i64.93 (3)H2A—C2—H2B107.7
O1iii—K1—O4i155.21 (3)O3—C3—N1123.01 (11)
O1iv—K1—O4i90.56 (3)O3—C3—C2121.88 (11)
O1W—K1—O4v64.79 (3)N1—C3—C2115.11 (11)
O3—K1—O4v108.45 (3)
O1—C1—C2—C3−159.16 (11)O4—N1—C3—C2174.68 (10)
O2—C1—C2—C324.31 (15)C1—C2—C3—O383.28 (14)
O4—N1—C3—O3−5.58 (18)C1—C2—C3—N1−96.98 (13)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z; (iii) x+1, −y+3/2, z+1/2; (iv) x+1, y, z; (v) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4O···O1iv0.89 (2)1.79 (2)2.6820 (13)177 (2)
N1—H1N···O2vi0.79 (2)2.12 (2)2.9025 (16)166.7 (18)
O1W—H1W···O2v0.82 (2)1.97 (2)2.7811 (15)171 (2)
O1W—H2W···O2vii0.84 (3)1.97 (3)2.8046 (14)175 (2)

Symmetry codes: (iv) x+1, y, z; (vi) −x, −y+2, −z; (v) −x+1, y−1/2, −z+1/2; (vii) x+1, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2123).

References

  • Bodwin, J. J., Cutland, A. D., Malkani, R. G. & Pecoraro, V. L. (2001). Coord. Chem. Rev.216–217, 489–512.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2002). Angew. Chem. Int. Ed.41, 4667–4670. [PubMed]
  • Ghio, A. J., Kennedy, T. P., Whorton, R. A., Crumbliss, A. L., Hatch, G. E. & Hoidal, J. R. (1992). Am. J. Physiol.263, 511–518. [PubMed]
  • Golenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2007). Acta Cryst. E63, o1515–o1517.
  • Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem.31, 1798–1805.
  • Hershko, C., Gordeuk, V. R., Thuma, P. E., Thenacho, E. N., Spira, D. T., Hider, R. C., Peto, T. E. A. & Drittenham, G. M. (1992). J. Inorg. Biochem.47, 267–277. [PubMed]
  • Kaczka, E. A., Gitterman, C. O., Dulaney, E. L. & Folkers, K. (1962). Biochemistry, 1, 340–343. [PubMed]
  • Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.
  • Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. (2004). Proc. Natl Acad. Sci. USA, 101, 18030–18035. [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans pp. 4064–4068.
  • Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem pp. 759–765.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography