PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2504.
Published online 2009 September 19. doi:  10.1107/S1600536809037258
PMCID: PMC2970343

4,11-Diaza-1,8-diazo­niacyclo­tetra­decane bis­(pyridine-2-carboxyl­ate) dihydrate

Abstract

The asymmetric unit of the title compound, C10H26N4 2+·2C6H4NO2 ·2H2O, consists of half of a doubly protonated 1,4,8,11-tetra­azacyclo­tetra­decane (cyclam) dication, a pyridine-2-carboxyl­ate anion and a solvent water mol­ecule. The complete dication is generated by a crystallographic centre and adopts an endodentate conformation which may be influenced by intra­molecular N—H(...)N hydrogen bonding. The carboxyl­ate group of the anion appears to be delocalized on the basis of the C—O bond lengths [1.257 (2) and 1.250 (2) Å]. In the crystal structure, the components are linked by inter­molecular N—H(...)O, N—H(...)N and O—H(...)O hydrogen bonds.

Related literature

For the crystal structures of [H2(cyclam)]X [X = (ClO4)2 or Cl2], see: Nave & Truter (1974 [triangle]); Kim et al. (2009 [triangle]). For the crystal structures of [H4(cyclam)]X·nH2O [X = Cl4, Br4, (ClO4)4, (SCN)4, (SO4)2 or (p-CH3C6H4SO3)4], see: Robinson et al. (1989 [triangle]); Subramanian & Zaworotko (1995 [triangle]). For the structure of pyridine-2-carboxylic acid, see: Hamazaki et al. (1998 [triangle]). For the crystal structures of pyridine-2-carboxyl­ate compounds, see: Kim & Ha (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2504-scheme1.jpg

Experimental

Crystal data

  • C10H26N4 2+·2C6H4NO2 ·2H2O
  • M r = 482.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2504-efi1.jpg
  • a = 10.2746 (8) Å
  • b = 12.0551 (9) Å
  • c = 10.3244 (8) Å
  • β = 93.104 (2)°
  • V = 1276.92 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 200 K
  • 0.22 × 0.17 × 0.11 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS: Sheldrick, 1996 [triangle]) T min = 0.868, T max = 1.000
  • 9364 measured reflections
  • 3152 independent reflections
  • 1540 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.123
  • S = 1.02
  • 3152 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037258/nk2004sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037258/nk2004Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

supplementary crystallographic information

Comment

The asymmetric unit of the title compound, C10H26N42+.2C6H4NO2-.2H2O, (I), consists of half of a doubly protonated 1,4,8,11-tetraazacyclotetradecane (cyclam) dication, a pyridine-2-carboxylate anion and a solvent water molecule (Fig. 1). The macrocyclic dication contains two protonated N atoms and two secondary amine N atoms, and is located on a centre of inversion. The dication adopts an endodentate conformation with the N atoms oriented towards the centre of the macrocyclic cavity. The conformation may be stabilized by intramolecular N—H···N hydrogen bonding (Table 1 and Fig. 2). The N2—C9—C10—N3 torsion angle of 66.5 (2)° displays the gauche conformation for the group within the dication. A similar conformation is also observed in the structures cyclam (Robinson et al., 1989) and [H2(cyclam)]X [X = (ClO4)2 or Cl2] (Nave & Truter, 1974; Kim et al., 2009). Unlike cyclam and the dication, the tetracation, [H4(cyclam)]4+, adopts an exodentate conformation, in which all four N atoms are oriented away from the ring cavity, occupying positions as far away as possible from each other on the ring periphery (Robinson et al., 1989; Subramanian & Zaworotko, 1995). The protonated N—C bond lengths (N3—C10/C11: 1.482 (3)/1.487 (3) Å) are longer than unprotonated N—C bond lengths (N2—C8/C9: 1.468 (3)/1.459 (3) Å). The carboxylate group of the anion appears to be delocalized on the basis of the C—O bond lengths (C—O: 1.250 (2) and 1.257 (2) Å). The components of the crystal structure are linked by intermolecular N—H···O, N—H···N and O—H···O hydrogen bonds into one-dimensional chains along [001] (Table 1 and Fig. 2).

Experimental

A solution of 1,4,8,11-tetraazacyclotetradecane (0.100 g, 0.50 mmol) and pyridine-2-carboxylic acid (0.123 g, 1.00 mmol) in H2O (10 ml) was stirred for 3 h at 60 °C. The solvent was removed under vacuum and the residue was washed with acetone/ether, to give a white powder (0.221 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (CH) or 0.99 (CH2) Å, N—H = 0.92 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O)].

Figures

Fig. 1.
The structure of (I), with displacement ellipsoids drawn at the 40% probability level for non-H atoms [Symmetry code: (a) -x, -y, -z].
Fig. 2.
View of the unit-cell contents of (I). Hydrogen bonding interactions are drawn with dashed lines.

Crystal data

C10H26N42+·2C6H4NO2·2(H2O)F(000) = 520
Mr = 482.58Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1456 reflections
a = 10.2746 (8) Åθ = 2.6–24.3°
b = 12.0551 (9) ŵ = 0.09 mm1
c = 10.3244 (8) ÅT = 200 K
β = 93.104 (2)°Block, colourless
V = 1276.92 (17) Å30.22 × 0.17 × 0.11 mm
Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer3152 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
graphiteRint = 0.070
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS: Sheldrick, 1996)h = −11→13
Tmin = 0.868, Tmax = 1.000k = −16→15
9364 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0315P)2] where P = (Fo2 + 2Fc2)/3
3152 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.84295 (15)0.05500 (12)0.30790 (13)0.0377 (4)
O20.71238 (16)0.00216 (13)0.46269 (15)0.0433 (5)
N10.67291 (18)0.21986 (15)0.23751 (17)0.0333 (5)
C10.5839 (2)0.29517 (19)0.1972 (2)0.0383 (6)
H10.61090.35380.14340.046*
C20.4558 (2)0.2926 (2)0.2290 (2)0.0434 (6)
H20.39600.34810.19840.052*
C30.4166 (2)0.2074 (2)0.3066 (2)0.0449 (7)
H30.32820.20170.32830.054*
C40.5066 (2)0.1306 (2)0.3524 (2)0.0384 (6)
H40.48180.07250.40820.046*
C50.6339 (2)0.13915 (18)0.31597 (19)0.0278 (5)
C60.7385 (2)0.05841 (18)0.3658 (2)0.0312 (5)
N20.14631 (18)0.09306 (16)0.05713 (17)0.0374 (5)
H210.14750.08110.14520.045*
N30.12754 (18)−0.12813 (15)−0.05896 (17)0.0360 (5)
H310.1456−0.1194−0.14470.043*
H320.0565−0.0845−0.04380.043*
C70.0412 (3)0.2719 (2)0.0986 (3)0.0510 (7)
H7A0.05610.35290.09460.061*
H7B0.04350.25030.19120.061*
C80.1501 (2)0.2132 (2)0.0340 (2)0.0446 (7)
H8A0.14240.2276−0.06050.054*
H8B0.23490.24300.06810.054*
C90.2570 (2)0.0350 (2)0.0057 (2)0.0459 (7)
H9A0.33880.05980.05190.055*
H9B0.26250.0525−0.08750.055*
C100.2406 (2)−0.0876 (2)0.0229 (2)0.0485 (7)
H10A0.3206−0.1264−0.00150.058*
H10B0.2270−0.10420.11510.058*
C110.0922 (3)−0.24601 (19)−0.0372 (3)0.0487 (7)
H11A0.0928−0.26090.05710.058*
H11B0.1577−0.2949−0.07480.058*
O30.11622 (16)0.04470 (16)0.33220 (14)0.0609 (6)
H3A0.03510.04180.33850.091*
H3B0.15930.03140.40190.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0313 (10)0.0450 (11)0.0374 (9)0.0095 (8)0.0064 (8)0.0074 (8)
O20.0425 (11)0.0484 (11)0.0389 (9)−0.0014 (8)0.0010 (8)0.0163 (8)
N10.0335 (12)0.0338 (11)0.0327 (10)0.0028 (9)0.0026 (9)0.0033 (9)
C10.0439 (16)0.0346 (14)0.0361 (13)0.0048 (12)−0.0003 (12)0.0055 (11)
C20.0398 (16)0.0423 (16)0.0476 (15)0.0118 (13)−0.0042 (13)−0.0027 (13)
C30.0305 (15)0.0573 (18)0.0473 (15)0.0062 (13)0.0050 (12)0.0018 (14)
C40.0377 (15)0.0464 (15)0.0314 (13)−0.0027 (13)0.0038 (11)0.0052 (12)
C50.0289 (13)0.0303 (13)0.0239 (11)−0.0024 (11)−0.0012 (10)−0.0007 (10)
C60.0365 (15)0.0284 (13)0.0281 (12)−0.0041 (11)−0.0045 (11)−0.0015 (11)
N20.0427 (13)0.0406 (12)0.0296 (10)0.0016 (10)0.0071 (9)−0.0003 (9)
N30.0392 (12)0.0361 (12)0.0333 (10)0.0082 (10)0.0086 (9)0.0035 (9)
C70.074 (2)0.0301 (14)0.0499 (16)−0.0049 (14)0.0144 (16)0.0006 (12)
C80.0459 (17)0.0431 (16)0.0448 (15)−0.0104 (13)0.0036 (13)0.0033 (13)
C90.0392 (16)0.0610 (18)0.0377 (14)−0.0040 (14)0.0035 (12)−0.0116 (13)
C100.0424 (16)0.0643 (19)0.0383 (14)0.0160 (14)−0.0020 (13)−0.0044 (13)
C110.0565 (18)0.0364 (16)0.0554 (17)0.0108 (13)0.0231 (15)0.0159 (13)
O30.0392 (11)0.1048 (16)0.0385 (10)−0.0009 (11)0.0012 (9)0.0222 (10)

Geometric parameters (Å, °)

O1—C61.257 (2)N3—H310.9200
O2—C61.250 (2)N3—H320.9200
N1—C11.339 (3)C7—C81.509 (3)
N1—C51.341 (2)C7—C11i1.511 (4)
C1—C21.374 (3)C7—H7A0.9900
C1—H10.9500C7—H7B0.9900
C2—C31.377 (3)C8—H8A0.9900
C2—H20.9500C8—H8B0.9900
C3—C41.374 (3)C9—C101.499 (3)
C3—H30.9500C9—H9A0.9900
C4—C51.385 (3)C9—H9B0.9900
C4—H40.9500C10—H10A0.9900
C5—C61.519 (3)C10—H10B0.9900
N2—C91.459 (3)C11—C7i1.511 (4)
N2—C81.468 (3)C11—H11A0.9900
N2—H210.9200C11—H11B0.9900
N3—C101.482 (3)O3—H3A0.8400
N3—C111.487 (3)O3—H3B0.8400
C1—N1—C5117.3 (2)C11i—C7—H7A108.9
N1—C1—C2123.9 (2)C8—C7—H7B108.9
N1—C1—H1118.1C11i—C7—H7B108.9
C2—C1—H1118.1H7A—C7—H7B107.7
C1—C2—C3118.0 (2)N2—C8—C7111.34 (19)
C1—C2—H2121.0N2—C8—H8A109.4
C3—C2—H2121.0C7—C8—H8A109.4
C4—C3—C2119.4 (2)N2—C8—H8B109.4
C4—C3—H3120.3C7—C8—H8B109.4
C2—C3—H3120.3H8A—C8—H8B108.0
C3—C4—C5119.0 (2)N2—C9—C10109.6 (2)
C3—C4—H4120.5N2—C9—H9A109.8
C5—C4—H4120.5C10—C9—H9A109.8
N1—C5—C4122.4 (2)N2—C9—H9B109.8
N1—C5—C6116.15 (19)C10—C9—H9B109.8
C4—C5—C6121.4 (2)H9A—C9—H9B108.2
O2—C6—O1126.1 (2)N3—C10—C9110.3 (2)
O2—C6—C5116.1 (2)N3—C10—H10A109.6
O1—C6—C5117.80 (19)C9—C10—H10A109.6
C9—N2—C8112.69 (19)N3—C10—H10B109.6
C9—N2—H21108.4C9—C10—H10B109.6
C8—N2—H21108.5H10A—C10—H10B108.1
C10—N3—C11114.79 (19)N3—C11—C7i110.9 (2)
C10—N3—H31108.6N3—C11—H11A109.5
C11—N3—H31108.6C7i—C11—H11A109.5
C10—N3—H32108.6N3—C11—H11B109.5
C11—N3—H32108.6C7i—C11—H11B109.5
H31—N3—H32107.5H11A—C11—H11B108.0
C8—C7—C11i113.3 (2)H3A—O3—H3B113.9
C8—C7—H7A108.9
C5—N1—C1—C2−1.6 (3)C4—C5—C6—O2−16.4 (3)
N1—C1—C2—C3−0.2 (4)N1—C5—C6—O1−17.0 (3)
C1—C2—C3—C42.0 (4)C4—C5—C6—O1164.4 (2)
C2—C3—C4—C5−1.9 (3)C9—N2—C8—C7−174.9 (2)
C1—N1—C5—C41.7 (3)C11i—C7—C8—N2−68.7 (3)
C1—N1—C5—C6−176.94 (19)C8—N2—C9—C10−175.26 (19)
C3—C4—C5—N10.0 (3)C11—N3—C10—C9−172.71 (19)
C3—C4—C5—C6178.6 (2)N2—C9—C10—N366.5 (2)
N1—C5—C6—O2162.19 (18)C10—N3—C11—C7i165.97 (19)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H21···O30.922.022.932 (2)170
N3—H32···N20.922.532.926 (3)106
N3—H32···N2i0.922.082.846 (3)139
N3—H31···O1ii0.921.862.749 (2)161
N3—H31···N1ii0.922.463.039 (2)121
O3—H3A···O1iii0.841.992.808 (2)165
O3—H3B···O2iv0.841.912.739 (2)168

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z; (iii) x−1, y, z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2004).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54, IUC9800049.
  • Kim, N.-H. & Ha, K. (2009a). Acta Cryst. E65, o1415. [PMC free article] [PubMed]
  • Kim, N.-H. & Ha, K. (2009b). Acta Cryst. E65, o2151. [PMC free article] [PubMed]
  • Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, o2128. [PMC free article] [PubMed]
  • Nave, C. & Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp 2351–2354.
  • Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem.19, 287–294.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Subramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem.73, 414–424.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography