PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1164.
Published online 2009 September 5. doi:  10.1107/S1600536809035089
PMCID: PMC2970340

catena-Poly[[aqua­(1,10-phenanthroline)cobalt(II)]-μ-4,4′-(propane-1,3-diyldi­oxy)dibenzoato]

Abstract

In the title compound, [Co(C17H14O6)(C12H8N2)(H2O)]n, the CoII atom is coordinated by a monodentate 4,4′-(propane-1,3-diyldi­oxy)dibenzoate (cpp) dianion, a water mol­ecule and a chelating 1,10-phenanthroline (phen) ligand. A symmetry-generated cpp ligand completes the CoN2O3 trigonal-bipyramidal geometry for the metal ion, with the N atoms occupying both equatorial and axial sites. The bridging cpp ligands form chains propagating in [110] and O—H(...)O hydrogen bonds consolidate the packing.

Related literature

For a related structure, see: Chen & Liu (2002 [triangle]). For background to metal-organic frameworks, see: Kitagawa et al. (2004 [triangle]); Liu et al. (2009 [triangle]); Schokecht & Kempe (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1164-scheme1.jpg

Experimental

Crystal data

  • [Co(C17H14O6)(C12H8N2)(H2O)]
  • M r = 571.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1164-efi1.jpg
  • a = 8.5967 (17) Å
  • b = 11.432 (2) Å
  • c = 14.423 (3) Å
  • α = 68.433 (3)°
  • β = 87.673 (4)°
  • γ = 74.635 (4)°
  • V = 1268.5 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 298 K
  • 0.23 × 0.14 × 0.11 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.850, T max = 0.924
  • 6503 measured reflections
  • 4499 independent reflections
  • 2242 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.063
  • S = 0.91
  • 4499 reflections
  • 358 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035089/hb5085sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035089/hb5085Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Zhejiang Economic and Trade Polytechnic for financial support.

supplementary crystallographic information

Comment

Design of effective ligands and the proper choice of metal centers are the keys to design and construct novel metal-organic frameworks (Kitagawa et al., 2004; Schokecht & Kempe, 2004). Polycarboxylate ligands have received considerable attention, owing to the variety of their coordination modes and structural features. 4,4'-(propane-1,3-diyldioxy)dibenzoic acid (H2cpp) is a potential multi-dentate ligand with a versatile coordination mode, which has been used in self-asssembled porous coordination synthesis (Liu et al., 2009).

The title compound, (I), was constructed by two kinds of bridging and chelating ligands under mild condition, H2cpp and phen which were self-assembled to a one-dimensional neutral metal-organic compound. In this paper, the crystal structure of (I) is presented.

As illustrated in Fig. 1, CoII adopts a trigonal bispyramidal geometry, generated by three O atoms from two adjacent monodenated-chelating carboxylate groups and one coordinated water molecule, and two N atoms from one chelating phen ligand. The three atoms (O1, O1W and N3) in the basical plane around the Co atom, while the other two atoms (O6 and N4) locate at apical positions. The twist angle of two rings of cpp ligand is 96.8 (5)°.

The neighboring Co atoms are linked by cp ligands forming a one-dimensional chain running along a axis (Fig. 2). These chains are decorated with phen ligands alternating on two sides, which is similar with some complexes (Chen & Liu, 2002) There are no π-π interactions between rings of phen ligands due to its transplacement arrangement.

In the crystal structure, strong intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into a 2D network, in which they may be effective in the stabilization of the structure.

Experimental

The followinf quantities were mixed: (23 mg, 0.1 mmol)) Co(NO3)2 of water solution (5 ml) and H2CP (26 mg, 0.1 mmol), phen (0.19 mg, 0.1 mmol) and NaOH (3.8 mg, 0.09 mmol), CH3CN (5 ml) and heated to at 428 K for 60 h in a pressurized reactor. Slow evaporation of this solution resulted in the formation of some pink blocks of (I).

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H = 0.84 (2)Å and H···H = 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). The highest residual difference electron-density peak is 1.50Å from N3.

Figures

Fig. 1.
View of a fragment of (I). Ellipsoids are drawn at the the 30% probability level. H atomsare shown as spheres of arbitrary radii. [symmetry codes: (i) x-1, y-1, z; (ii) 1+x, y+1, 3+z]
Fig. 2.
Partial packing of (I) showing the formation of a chain along c axis.

Crystal data

[Co(C17H14O6)(C12H8N2)(H2O)]Z = 2
Mr = 571.43F(000) = 590
Triclinic, P1Dx = 1.496 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5967 (17) ÅCell parameters from 4499 reflections
b = 11.432 (2) Åθ = 1.5–25.2°
c = 14.423 (3) ŵ = 0.73 mm1
α = 68.433 (3)°T = 298 K
β = 87.673 (4)°Block, pink
γ = 74.635 (4)°0.23 × 0.14 × 0.11 mm
V = 1268.5 (4) Å3

Data collection

Bruker APEXII area-detector diffractometer4499 independent reflections
Radiation source: fine-focus sealed tube2242 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 25.2°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −10→8
Tmin = 0.850, Tmax = 0.924k = −11→13
6503 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 0.91w = 1/[σ2(Fo2) + (0.01P)2 + 0.001P] where P = (Fo2 + 2Fc2)/3
4499 reflections(Δ/σ)max < 0.001
358 parametersΔρmax = 0.19 e Å3
3 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.63053 (6)−0.14519 (4)0.37254 (3)0.04796 (15)
O10.6918 (3)0.01199 (17)0.26875 (13)0.0552 (6)
O20.5285 (3)0.08365 (17)0.36879 (14)0.0568 (6)
O61.4634 (3)0.84914 (19)0.28126 (14)0.0557 (6)
O51.2435 (3)0.91935 (18)0.35373 (14)0.0599 (6)
O30.6256 (3)0.62108 (18)0.06262 (15)0.0663 (7)
O40.9367 (3)0.79789 (19)0.01759 (15)0.0645 (7)
O1W0.4880 (3)−0.19495 (18)0.49172 (15)0.0547 (6)
N30.8001 (3)−0.2965 (2)0.34395 (17)0.0459 (7)
N40.8312 (3)−0.1855 (2)0.47342 (16)0.0479 (7)
C50.6272 (4)0.4931 (3)0.1143 (2)0.0478 (9)
C151.2806 (4)0.8073 (2)0.14796 (19)0.0446 (8)
H151.39260.78000.14810.053*
C20.6156 (4)0.2400 (3)0.23088 (19)0.0372 (8)
C171.3121 (5)0.8825 (3)0.2871 (2)0.0442 (9)
C141.2101 (4)0.8686 (2)0.21218 (19)0.0388 (8)
C111.0202 (5)0.8281 (3)0.0810 (2)0.0466 (9)
C220.9490 (4)−0.3320 (3)0.3897 (2)0.0431 (8)
C10.6105 (4)0.1044 (3)0.2937 (2)0.0449 (9)
C161.1861 (5)0.7864 (3)0.0841 (2)0.0513 (9)
H161.23490.74350.04240.062*
C131.0445 (4)0.9135 (2)0.2059 (2)0.0428 (8)
H130.99590.95740.24690.051*
C230.9660 (4)−0.2726 (3)0.4596 (2)0.0427 (8)
C201.0562 (5)−0.4759 (3)0.3037 (2)0.0574 (10)
H201.1410−0.53480.28880.069*
C120.9468 (4)0.8959 (2)0.1406 (2)0.0462 (8)
H120.83500.92870.13700.055*
C70.7238 (4)0.2625 (3)0.1578 (2)0.0491 (9)
H70.79390.19180.14730.059*
C180.7807 (4)−0.3527 (3)0.2806 (2)0.0516 (9)
H180.6787−0.33140.24980.062*
C40.5183 (4)0.4717 (3)0.1876 (2)0.0517 (9)
H40.44800.54220.19830.062*
C60.7314 (4)0.3883 (3)0.0993 (2)0.0536 (10)
H60.80610.40130.05060.064*
C30.5132 (4)0.3464 (3)0.2450 (2)0.0473 (9)
H30.43930.33340.29410.057*
C211.0827 (4)−0.4225 (3)0.3726 (2)0.0454 (8)
C290.8459 (4)−0.1330 (3)0.5391 (2)0.0566 (10)
H290.7556−0.07370.54890.068*
C261.1150 (4)−0.3060 (3)0.5110 (2)0.0494 (9)
C241.2331 (4)−0.4527 (3)0.4262 (2)0.0606 (10)
H241.3225−0.51200.41540.073*
C90.7016 (4)0.7961 (3)−0.0633 (2)0.0729 (12)
H9A0.58690.8383−0.07870.088*
H9B0.75510.8191−0.12550.088*
C190.9069 (5)−0.4420 (3)0.2586 (2)0.0596 (10)
H190.8888−0.47810.21320.072*
C80.7272 (4)0.6493 (3)−0.0194 (2)0.0680 (11)
H8A0.69890.6191−0.06950.082*
H8B0.83960.60560.00350.082*
C271.1243 (4)−0.2470 (3)0.5802 (2)0.0615 (10)
H271.2213−0.26610.61590.074*
C280.9895 (5)−0.1616 (3)0.5944 (2)0.0635 (10)
H280.9935−0.12290.64050.076*
C251.2484 (4)−0.3972 (3)0.4922 (2)0.0581 (9)
H251.3481−0.41890.52590.070*
C100.7656 (5)0.8476 (3)0.0062 (2)0.0634 (10)
H10A0.73590.9423−0.02170.076*
H10B0.71960.81950.07060.076*
H1WA0.399 (3)−0.145 (3)0.453 (2)0.095*
H1WB0.482 (4)−0.163 (3)0.5397 (16)0.095*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0490 (4)0.0497 (3)0.0462 (3)−0.0154 (2)−0.0012 (2)−0.0169 (2)
O10.0598 (18)0.0395 (13)0.0671 (15)−0.0094 (11)0.0061 (12)−0.0235 (11)
O20.072 (2)0.0588 (14)0.0454 (14)−0.0295 (12)0.0080 (12)−0.0181 (11)
O60.0438 (18)0.0788 (16)0.0523 (14)−0.0163 (13)−0.0046 (13)−0.0324 (12)
O50.0539 (18)0.0800 (16)0.0604 (15)−0.0118 (12)−0.0031 (12)−0.0462 (13)
O30.085 (2)0.0444 (14)0.0696 (16)−0.0252 (13)−0.0050 (14)−0.0151 (12)
O40.079 (2)0.0670 (15)0.0612 (15)−0.0276 (15)−0.0163 (14)−0.0321 (12)
O1W0.064 (2)0.0617 (15)0.0437 (14)−0.0218 (12)0.0013 (11)−0.0222 (12)
N30.053 (2)0.0458 (16)0.0438 (16)−0.0165 (14)−0.0043 (15)−0.0190 (13)
N40.057 (2)0.0510 (16)0.0426 (16)−0.0185 (15)−0.0054 (14)−0.0218 (13)
C50.062 (3)0.036 (2)0.047 (2)−0.0167 (19)−0.0113 (19)−0.0136 (17)
C150.048 (3)0.0424 (18)0.0453 (19)−0.0145 (16)0.0018 (18)−0.0170 (16)
C20.044 (2)0.0402 (19)0.0331 (18)−0.0136 (17)−0.0008 (16)−0.0176 (15)
C170.053 (3)0.0387 (19)0.043 (2)−0.0141 (18)0.000 (2)−0.0160 (16)
C140.051 (3)0.0331 (17)0.0341 (18)−0.0136 (17)0.0003 (17)−0.0125 (14)
C110.063 (3)0.0393 (19)0.042 (2)−0.0215 (19)−0.0062 (19)−0.0131 (16)
C220.049 (3)0.0407 (19)0.040 (2)−0.0205 (18)0.0011 (18)−0.0100 (16)
C10.048 (3)0.045 (2)0.048 (2)−0.0173 (18)−0.0128 (18)−0.0192 (18)
C160.061 (3)0.049 (2)0.052 (2)−0.012 (2)0.001 (2)−0.0296 (17)
C130.049 (3)0.0384 (18)0.045 (2)−0.0107 (17)0.0005 (18)−0.0202 (15)
C230.045 (3)0.046 (2)0.038 (2)−0.0179 (18)−0.0025 (18)−0.0128 (16)
C200.060 (3)0.052 (2)0.058 (2)−0.008 (2)0.001 (2)−0.0235 (18)
C120.047 (3)0.0418 (19)0.049 (2)−0.0120 (16)−0.0071 (18)−0.0146 (16)
C70.067 (3)0.043 (2)0.047 (2)−0.0169 (18)0.0029 (19)−0.0259 (17)
C180.063 (3)0.051 (2)0.046 (2)−0.0232 (19)−0.0024 (18)−0.0167 (17)
C40.049 (3)0.040 (2)0.067 (2)−0.0037 (17)−0.0044 (19)−0.0248 (18)
C60.080 (3)0.049 (2)0.043 (2)−0.030 (2)0.0109 (19)−0.0209 (17)
C30.047 (3)0.048 (2)0.047 (2)−0.0140 (18)−0.0013 (17)−0.0169 (17)
C210.045 (3)0.044 (2)0.048 (2)−0.0119 (18)0.0055 (19)−0.0169 (16)
C290.062 (3)0.056 (2)0.059 (2)−0.0123 (19)−0.003 (2)−0.0311 (18)
C260.044 (3)0.048 (2)0.056 (2)−0.0140 (18)−0.0012 (19)−0.0179 (17)
C240.048 (3)0.051 (2)0.078 (3)−0.0065 (18)0.001 (2)−0.0237 (19)
C90.110 (4)0.060 (2)0.051 (2)−0.047 (2)−0.029 (2)−0.0032 (18)
C190.071 (3)0.060 (2)0.056 (2)−0.016 (2)−0.001 (2)−0.0324 (19)
C80.107 (4)0.056 (2)0.051 (2)−0.044 (2)−0.010 (2)−0.0138 (18)
C270.062 (3)0.071 (2)0.059 (2)−0.025 (2)−0.015 (2)−0.024 (2)
C280.061 (3)0.071 (3)0.070 (3)−0.016 (2)−0.015 (2)−0.040 (2)
C250.042 (3)0.062 (2)0.071 (2)−0.0132 (19)−0.0098 (19)−0.024 (2)
C100.082 (4)0.050 (2)0.055 (2)−0.026 (2)−0.023 (2)−0.0072 (17)

Geometric parameters (Å, °)

Co1—O6i2.017 (2)C13—C121.387 (4)
Co1—O12.0511 (17)C13—H130.9300
Co1—O1W2.063 (2)C23—C261.395 (4)
Co1—N32.104 (2)C20—C191.357 (4)
Co1—N42.143 (2)C20—C211.396 (4)
O1—C11.265 (3)C20—H200.9300
O2—C11.251 (3)C12—H120.9300
O6—C171.263 (3)C7—C61.392 (3)
O6—Co1ii2.017 (2)C7—H70.9300
O5—C171.253 (3)C18—C191.394 (4)
O3—C51.373 (3)C18—H180.9300
O3—C81.432 (3)C4—C31.377 (3)
O4—C111.374 (3)C4—H40.9300
O4—C101.421 (4)C6—H60.9300
O1W—H1WA0.885 (17)C3—H30.9300
O1W—H1WB0.885 (15)C21—C241.427 (4)
N3—C181.332 (3)C29—C281.393 (4)
N3—C221.354 (4)C29—H290.9300
N4—C291.319 (3)C26—C271.409 (3)
N4—C231.374 (3)C26—C251.423 (4)
C5—C61.375 (4)C24—C251.352 (3)
C5—C41.381 (3)C24—H240.9300
C15—C161.376 (4)C9—C81.517 (3)
C15—C141.387 (3)C9—C101.518 (3)
C15—H150.9300C9—H9A0.9700
C2—C71.374 (3)C9—H9B0.9700
C2—C31.376 (3)C19—H190.9300
C2—C11.493 (3)C8—H8A0.9700
C17—C141.496 (4)C8—H8B0.9700
C14—C131.374 (4)C27—C281.366 (4)
C11—C161.375 (4)C27—H270.9300
C11—C121.388 (3)C28—H280.9300
C22—C211.409 (4)C25—H250.9300
C22—C231.439 (3)C10—H10A0.9700
C16—H160.9300C10—H10B0.9700
O6i—Co1—O195.13 (8)C13—C12—H12120.9
O6i—Co1—O1W90.40 (9)C11—C12—H12120.9
O1—Co1—O1W142.18 (7)C2—C7—C6121.8 (3)
O6i—Co1—N390.17 (10)C2—C7—H7119.1
O1—Co1—N399.18 (8)C6—C7—H7119.1
O1W—Co1—N3118.22 (8)N3—C18—C19122.8 (3)
O6i—Co1—N4166.69 (9)N3—C18—H18118.6
O1—Co1—N492.61 (8)C19—C18—H18118.6
O1W—Co1—N490.10 (9)C3—C4—C5120.3 (3)
N3—Co1—N477.90 (10)C3—C4—H4119.8
C1—O1—Co1101.40 (18)C5—C4—H4119.8
C17—O6—Co1ii125.76 (19)C5—C6—C7119.2 (3)
C5—O3—C8118.2 (2)C5—C6—H6120.4
C11—O4—C10118.3 (2)C7—C6—H6120.4
Co1—O1W—H1WA91 (2)C2—C3—C4121.2 (3)
Co1—O1W—H1WB122.6 (19)C2—C3—H3119.4
H1WA—O1W—H1WB103 (2)C4—C3—H3119.4
C18—N3—C22117.3 (3)C20—C21—C22116.5 (3)
C18—N3—Co1127.3 (2)C20—C21—C24125.1 (3)
C22—N3—Co1115.16 (19)C22—C21—C24118.3 (3)
C29—N4—C23117.4 (3)N4—C29—C28123.5 (3)
C29—N4—Co1129.9 (2)N4—C29—H29118.3
C23—N4—Co1112.55 (19)C28—C29—H29118.3
O3—C5—C6124.4 (3)C23—C26—C27117.3 (3)
O3—C5—C4116.0 (3)C23—C26—C25119.3 (3)
C6—C5—C4119.5 (3)C27—C26—C25123.4 (4)
C16—C15—C14120.5 (3)C25—C24—C21121.4 (3)
C16—C15—H15119.8C25—C24—H24119.3
C14—C15—H15119.8C21—C24—H24119.3
C7—C2—C3118.0 (3)C8—C9—C10113.0 (2)
C7—C2—C1121.0 (3)C8—C9—H9A109.0
C3—C2—C1121.0 (3)C10—C9—H9A109.0
O5—C17—O6124.6 (3)C8—C9—H9B109.0
O5—C17—C14118.5 (3)C10—C9—H9B109.0
O6—C17—C14116.8 (3)H9A—C9—H9B107.8
C13—C14—C15117.9 (3)C20—C19—C18119.7 (3)
C13—C14—C17121.5 (3)C20—C19—H19120.2
C15—C14—C17120.6 (3)C18—C19—H19120.2
O4—C11—C16116.4 (3)O3—C8—C9107.4 (3)
O4—C11—C12123.8 (3)O3—C8—H8A110.2
C16—C11—C12119.8 (3)C9—C8—H8A110.2
N3—C22—C21123.7 (3)O3—C8—H8B110.2
N3—C22—C23116.3 (3)C9—C8—H8B110.2
C21—C22—C23120.1 (3)H8A—C8—H8B108.5
O2—C1—O1121.5 (3)C28—C27—C26119.4 (3)
O2—C1—C2120.5 (3)C28—C27—H27120.3
O1—C1—C2118.0 (3)C26—C27—H27120.3
C11—C16—C15120.9 (3)C27—C28—C29119.3 (3)
C11—C16—H16119.6C27—C28—H28120.3
C15—C16—H16119.6C29—C28—H28120.3
C14—C13—C12122.6 (3)C24—C25—C26121.3 (3)
C14—C13—H13118.7C24—C25—H25119.4
C12—C13—H13118.7C26—C25—H25119.4
N4—C23—C26123.0 (3)O4—C10—C9108.3 (3)
N4—C23—C22117.4 (3)O4—C10—H10A110.0
C26—C23—C22119.6 (3)C9—C10—H10A110.0
C19—C20—C21120.1 (3)O4—C10—H10B110.0
C19—C20—H20120.0C9—C10—H10B110.0
C21—C20—H20120.0H10A—C10—H10B108.4
C13—C12—C11118.2 (3)

Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2iii0.89 (2)1.85 (2)2.729 (3)175 (3)
O1W—H1WA···O5i0.89 (2)1.80 (2)2.657 (3)161 (3)

Symmetry codes: (iii) −x+1, −y, −z+1; (i) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5085).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J.8, 4811–4817. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Liu, J. Q., Wang, Y. Y., Liu, P., Dong, Z., Shi, Q. Z. & Batten, S. R. (2009). CrystEngComm, 11, 1207–1209.
  • Schokecht, B. & Kempe, R. (2004). Z. Anorg. Allg. Chem.630, 1377–1379.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography