PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1252–m1253.
Published online 2009 September 30. doi:  10.1107/S1600536809038653
PMCID: PMC2970338

1,2:5,6-Di-O-isopropyl­idene-α-d-3-glucofuranosyl (R p)-2-(diphenyl­phosphino)ferrocene-1-carboxyl­ate

Abstract

The title compound, [Fe(C5H5)(C30H32O7P)], which is an inter­mediate in the synthesis of (R p)-2-(diphenyl­phos­phino)ferrocene-1-carboxylic acid, crystallizes in the common chiral space group P212121. In general, the mol­ecular geometry is very similar to that of the corresponding 2,1′-bis­(diphenyl­phosphino) congener. The ferrocene unit assumes a regular geometry with the proximal bulky substituents efficiently avoiding mutual spatial contacts. In the crystal, the mol­ecules participate in weak intra- and inter­molecular C—H(...)O inter­actions.

Related literature

The title compound was prepared according to Breit & Breuninger (2005a [triangle]). For a related structure, see: Lamač et al. (2009 [triangle]). For selected references concerning the use of enantio­pure 2-(diphenyl­phosphino)ferrocene-1-carboxylic acids, see: Longmire et al. (2000 [triangle], 2002 [triangle]); You et al. (2000 [triangle], 2001 [triangle]); Štěpnička (2002 [triangle]); Breit & Breuninger (2004 [triangle], 2005b [triangle],c [triangle]); Lamač et al. (2007 [triangle]); Bianchini et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1252-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C30H32O7P)]
  • M r = 656.47
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1252-efi1.jpg
  • a = 10.3488 (1) Å
  • b = 11.5379 (1) Å
  • c = 26.9830 (3) Å
  • V = 3221.86 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 150 K
  • 0.30 × 0.20 × 0.18 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 68616 measured reflections
  • 7369 independent reflections
  • 6632 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.112
  • S = 1.07
  • 7369 reflections
  • 401 parameters
  • H-atom parameters constrained
  • Δρmax = 2.00 e Å−3
  • Δρmin = −0.41 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3230 Friedel pairs
  • Flack parameter: −0.012 (16)

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038653/im2141sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038653/im2141Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is a part of the long-term research projects supported by the Ministry of Education, Youth and Sports of the Czech Republic (project Nos. LC06070 and MSM0021620857).

supplementary crystallographic information

Comment

1,2:5,6-Di-O-isopropylidene-α-D-3-glucofuranosyl 2-(diphenylphosphino)ferrocene-1-carboxylates are useful intermediates in the preparation of optically pure, planar-only chiral 2-(diphenylphosphino)ferrocene-1-carboxylic acids, which already proved to be valuable organometallic synthetic building blocks and chiral auxilliaries (selected references: Longmire et al., 2000 and 2002; You et al., 2000 and 2001; Štěpnička, 2002; Breit & Breuninger, 2004 and 2005b,c; Lamač et al., 2007; and Bianchini et al., 2008).

Structural parameters of the title compound (Fig. 1) are very similar to those reported previously for the related bisphosphine derivative, 1,2:5,6-di-O-isopropylidene-α-D-3-glucofuranosyl (Rp)-2,1'-bis(diphenylphosphino)ferrocene-1-carboxylate (Lamač et al., 2009). Likwise this reference compound, the ferrocene unit in the title compound is only negligibly tilted (dihedral angle of the mean cyclopentadienyl planes being 2.7 (2)°) and displays similar Fe—ring centroid distances (1.640 (1) and 1.650 (12) Å for the cyclopentadienyl rings C(1–5) and C(6–10), respectively). The ferrocene substituents attached in adjacent positions are directed away from each other so as to avoid spatial contacts and to minimize their steric influence on the ferrocene scaffold (cf. the torsion angle C11—C1—C2—P = 0.6 (4)°).

In the solid state, the individual molecules are involved in intra- and intermolecular C—H···O contacts (Table 1).

Experimental

The title compound was prepared by esterification of racemic 2-(diphenylphosphino)ferrocene-1-carboxylic acid with glucose diacetonide (i.e., 1,2:5,6-di-O-isopropylidene-α-D-3-glucofuranose) followed by chromatographic separation of the resulting mixture of diastereoisomers (Breit & Breuninger, 2005a). X-ray quality crystals were grown by crystallization from diethyl ether-pentane at -18 °C.

Refinement

All H-atoms were included in their calculated positions and refined as riding atoms. The unusually high 'positive' residual electron density can be attributed to lone electron pair at phosphorus (N.B.: The second largest residual electron density peak has only 0.63 e Å-3). Attempted refinement of this largest maximum as a helium atom (two electrons) resulted not only in reasonable geometry (P—X = 1.354 (5) Å; C—P—X angles = 103.5 (2)–124.6 (2) °) but also in a significant decrease in the R-indices (R = 0.0314, wR = 0.0395% for observed diffractions) and extremes on the residual electron denisty map (0.39, -0.33 e Å-3). Besides, the dummy atom is found in a position suitable for the formation of an intramolecular C—H···X contact with H35 (cf. C35···X = 2.14 Å, C35—H35···X = 178 °)

Figures

Fig. 1.
A view of the molecular structure showing the atom numbering scheme and displacement ellipsoids for the non-H atoms at the 30% probability level.

Crystal data

[Fe(C5H5)(C30H32O7P)]F(000) = 1376
Mr = 656.47Dx = 1.353 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4167 reflections
a = 10.3488 (1) Åθ = 1.0–27.5°
b = 11.5379 (1) ŵ = 0.56 mm1
c = 26.9830 (3) ÅT = 150 K
V = 3221.86 (6) Å3Prism, orange
Z = 40.30 × 0.20 × 0.18 mm

Data collection

Nonius KappaCCD diffractometer6632 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
horizontally mounted graphite crystalθmax = 27.5°, θmin = 1.5°
Detector resolution: 9.091 pixels mm-1h = −13→13
ω and π scans to fill the Ewald spherek = −14→14
68616 measured reflectionsl = −34→34
7369 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112w = 1/[σ2(Fo2) + (0.0602P)2 + 2.0459P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
7369 reflectionsΔρmax = 2.00 e Å3
401 parametersΔρmin = −0.41 e Å3
0 restraintsAbsolute structure: Flack (1983), 3230 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.012 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe0.75646 (3)0.73651 (3)0.085623 (12)0.02205 (9)
P0.67684 (7)0.93927 (6)0.17071 (3)0.02765 (15)
O10.5336 (2)0.9165 (2)0.00514 (7)0.0406 (5)
O20.48826 (16)0.95039 (16)0.08521 (7)0.0250 (4)
C10.7010 (3)0.8961 (2)0.06389 (10)0.0221 (5)
C20.7578 (3)0.9010 (2)0.11293 (9)0.0224 (5)
C30.8872 (3)0.8588 (2)0.10792 (11)0.0262 (6)
H30.94680.85170.13360.031*
C40.9102 (3)0.8294 (2)0.05762 (10)0.0260 (6)
H40.98690.80000.04480.031*
C50.7963 (3)0.8527 (2)0.03036 (11)0.0264 (6)
H50.78540.8416−0.00350.032*
C60.5950 (3)0.6355 (2)0.09204 (12)0.0332 (6)
H60.51020.66000.08730.040*
C70.6644 (3)0.6387 (2)0.13739 (11)0.0353 (7)
H70.63270.66480.16760.042*
C80.7908 (3)0.5949 (3)0.12855 (12)0.0364 (7)
H80.85660.58780.15180.044*
C90.7981 (3)0.5639 (2)0.07764 (12)0.0325 (6)
H90.86980.53270.06170.039*
C100.6769 (3)0.5888 (2)0.05542 (12)0.0337 (6)
H100.65520.57640.02240.040*
C110.5682 (3)0.9205 (2)0.04768 (10)0.0242 (5)
C120.6543 (3)1.0958 (2)0.16384 (10)0.0286 (6)
C130.5657 (3)1.1494 (3)0.19509 (13)0.0374 (7)
H130.52081.10570.21840.045*
C140.5441 (4)1.2664 (3)0.19166 (16)0.0527 (9)
H140.48541.30130.21310.063*
C150.6065 (4)1.3323 (3)0.15764 (19)0.0614 (12)
H150.59061.41150.15570.074*
C160.6950 (4)1.2801 (3)0.12553 (17)0.0568 (10)
H160.73781.32450.10190.068*
C170.7188 (3)1.1630 (3)0.12882 (13)0.0428 (8)
H170.77831.12860.10760.051*
C180.8108 (3)0.9280 (2)0.21501 (10)0.0312 (6)
C190.9024 (3)1.0140 (3)0.22259 (11)0.0352 (7)
H190.90131.08040.20300.042*
C200.9958 (3)1.0016 (3)0.25926 (12)0.0421 (8)
H201.05631.06000.26430.050*
C210.9992 (3)0.9027 (3)0.28826 (12)0.0427 (8)
H211.06230.89450.31250.051*
C220.9091 (4)0.8164 (3)0.28114 (12)0.0429 (8)
H220.91150.74980.30050.051*
C230.8147 (3)0.8290 (3)0.24498 (11)0.0372 (7)
H230.75340.77090.24060.045*
O310.2736 (2)1.05237 (18)0.14377 (7)0.0370 (5)
O320.1519 (3)1.1833 (2)0.09835 (9)0.0525 (7)
O330.2334 (2)1.11358 (17)0.02688 (7)0.0357 (5)
O340.3015 (2)0.74486 (18)0.11693 (7)0.0348 (5)
O350.14038 (19)0.7207 (2)0.17217 (8)0.0374 (5)
C310.2789 (3)1.1452 (3)0.11065 (12)0.0373 (7)
H310.33121.20880.12400.045*
C320.3346 (3)1.1002 (2)0.06165 (11)0.0293 (6)
H320.41401.14030.05180.035*
C330.3552 (2)0.9699 (2)0.07100 (10)0.0260 (6)
H330.33070.92310.04220.031*
C340.2681 (3)0.9470 (3)0.11491 (10)0.0299 (6)
H340.17950.93560.10300.036*
C350.3053 (3)0.8459 (3)0.14770 (11)0.0319 (6)
H350.39200.85710.16150.038*
C360.2076 (3)0.8218 (3)0.18907 (12)0.0401 (7)
H36A0.25100.80710.22030.048*
H36B0.14870.88650.19320.048*
C370.1424 (3)1.1947 (3)0.04633 (12)0.0348 (7)
C380.1743 (4)1.3153 (3)0.02899 (17)0.0534 (9)
H38A0.11401.36930.04310.080*
H38B0.16921.3185−0.00650.080*
H38C0.26031.33510.03940.080*
C390.0093 (3)1.1574 (4)0.02956 (19)0.0577 (10)
H39A−0.01241.08480.04480.087*
H39B0.00871.1486−0.00580.087*
H39C−0.05291.21500.03900.087*
C400.2314 (3)0.6572 (3)0.14332 (10)0.0319 (6)
C410.3214 (3)0.5871 (3)0.17559 (12)0.0430 (8)
H41A0.36760.63810.19740.065*
H41B0.38170.54600.15510.065*
H41C0.27220.53280.19480.065*
C420.1585 (4)0.5848 (3)0.10663 (13)0.0467 (8)
H42A0.11340.52410.12370.070*
H42B0.21800.55130.08340.070*
H42C0.09750.63250.08930.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe0.02177 (17)0.02121 (16)0.02317 (17)0.00037 (15)0.00262 (15)−0.00003 (13)
P0.0337 (4)0.0239 (3)0.0253 (3)0.0028 (3)0.0028 (3)−0.0012 (3)
O10.0324 (11)0.0661 (16)0.0233 (10)0.0081 (11)−0.0023 (8)−0.0013 (10)
O20.0197 (8)0.0311 (9)0.0241 (9)0.0034 (7)−0.0025 (7)−0.0028 (8)
C10.0224 (12)0.0207 (11)0.0232 (12)0.0016 (9)0.0020 (10)−0.0002 (10)
C20.0220 (12)0.0191 (10)0.0261 (11)−0.0010 (11)0.0001 (12)0.0003 (9)
C30.0209 (13)0.0259 (13)0.0319 (14)−0.0008 (10)−0.0036 (11)−0.0005 (11)
C40.0198 (12)0.0262 (14)0.0320 (14)−0.0001 (10)0.0077 (11)0.0037 (11)
C50.0253 (13)0.0272 (13)0.0267 (13)−0.0005 (10)0.0028 (10)0.0063 (11)
C60.0252 (13)0.0252 (13)0.0491 (18)−0.0047 (10)0.0067 (13)−0.0001 (13)
C70.0468 (18)0.0262 (14)0.0330 (15)−0.0044 (13)0.0190 (14)0.0017 (12)
C80.0441 (18)0.0248 (13)0.0401 (17)−0.0016 (12)−0.0016 (13)0.0099 (12)
C90.0349 (14)0.0191 (12)0.0436 (17)0.0031 (10)0.0117 (12)−0.0012 (12)
C100.0367 (16)0.0275 (14)0.0369 (16)−0.0055 (12)0.0041 (13)−0.0066 (12)
C110.0246 (13)0.0237 (13)0.0243 (13)0.0003 (10)0.0006 (10)0.0012 (10)
C120.0291 (14)0.0256 (12)0.0310 (14)0.0000 (11)−0.0072 (11)−0.0032 (11)
C130.0324 (16)0.0362 (16)0.0437 (18)0.0045 (13)−0.0024 (13)−0.0103 (14)
C140.0422 (18)0.0366 (18)0.079 (3)0.0080 (16)−0.0027 (17)−0.0191 (19)
C150.056 (2)0.0242 (16)0.104 (4)0.0048 (16)−0.023 (2)−0.0059 (19)
C160.068 (2)0.0303 (17)0.072 (3)−0.0042 (17)0.002 (2)0.0071 (17)
C170.055 (2)0.0261 (14)0.0474 (19)−0.0005 (14)0.0070 (15)−0.0008 (13)
C180.0401 (15)0.0304 (14)0.0231 (13)0.0070 (12)0.0024 (11)−0.0044 (11)
C190.0413 (17)0.0359 (15)0.0284 (15)0.0032 (13)−0.0054 (13)−0.0015 (12)
C200.0406 (17)0.048 (2)0.0373 (18)0.0037 (15)−0.0029 (15)−0.0089 (15)
C210.0441 (19)0.055 (2)0.0285 (15)0.0132 (16)−0.0079 (14)−0.0078 (14)
C220.058 (2)0.0410 (18)0.0298 (16)0.0161 (16)−0.0012 (15)0.0017 (13)
C230.0480 (18)0.0322 (15)0.0315 (15)0.0067 (14)−0.0010 (14)−0.0008 (12)
O310.0423 (12)0.0388 (11)0.0300 (10)0.0069 (10)0.0007 (9)−0.0086 (9)
O320.0508 (14)0.0652 (17)0.0415 (13)0.0302 (13)0.0041 (11)−0.0036 (11)
O330.0382 (12)0.0353 (10)0.0337 (10)0.0132 (10)−0.0098 (10)−0.0054 (8)
O340.0381 (10)0.0327 (11)0.0335 (10)0.0007 (9)0.0119 (8)0.0062 (9)
O350.0267 (10)0.0502 (13)0.0352 (11)0.0015 (9)0.0087 (8)0.0063 (10)
C310.0432 (18)0.0335 (15)0.0353 (15)0.0086 (13)−0.0087 (13)−0.0072 (12)
C320.0261 (14)0.0269 (13)0.0349 (14)0.0052 (11)−0.0029 (12)−0.0012 (11)
C330.0212 (12)0.0279 (13)0.0289 (13)0.0031 (10)−0.0031 (10)−0.0016 (10)
C340.0240 (13)0.0350 (14)0.0308 (13)−0.0001 (12)−0.0013 (11)−0.0029 (11)
C350.0249 (13)0.0397 (16)0.0310 (15)−0.0010 (12)0.0031 (11)0.0030 (12)
C360.0383 (17)0.0512 (19)0.0307 (15)−0.0003 (14)0.0081 (12)−0.0011 (14)
C370.0296 (15)0.0320 (15)0.0427 (17)0.0098 (12)−0.0025 (13)−0.0013 (13)
C380.048 (2)0.0327 (16)0.079 (3)0.0075 (16)0.007 (2)0.0024 (17)
C390.0371 (19)0.050 (2)0.086 (3)0.0038 (16)−0.0101 (19)0.003 (2)
C400.0290 (15)0.0387 (14)0.0280 (13)−0.0009 (12)0.0043 (12)0.0079 (11)
C410.0363 (16)0.0530 (19)0.0398 (17)0.0037 (15)0.0064 (14)0.0161 (15)
C420.051 (2)0.048 (2)0.0415 (18)−0.0077 (17)−0.0051 (16)0.0030 (15)

Geometric parameters (Å, °)

Fe—C12.016 (3)C19—C201.391 (4)
Fe—C72.033 (3)C19—H190.9300
Fe—C82.034 (3)C20—C211.383 (5)
Fe—C22.035 (2)C20—H200.9300
Fe—C62.045 (3)C21—C221.378 (5)
Fe—C32.045 (3)C21—H210.9300
Fe—C52.047 (3)C22—C231.388 (5)
Fe—C92.050 (3)C22—H220.9300
Fe—C102.061 (3)C23—H230.9300
Fe—C42.062 (3)O31—C311.396 (4)
P—C21.824 (3)O31—C341.445 (3)
P—C121.831 (3)O32—C371.413 (4)
P—C181.835 (3)O32—C311.426 (4)
O1—C111.203 (3)O33—C321.415 (3)
O2—C111.352 (3)O33—C371.428 (4)
O2—C331.447 (3)O34—C351.432 (4)
C1—C51.429 (4)O34—C401.434 (3)
C1—C21.449 (4)O35—C401.425 (4)
C1—C111.469 (4)O35—C361.432 (4)
C2—C31.432 (4)C31—C321.533 (4)
C3—C41.419 (4)C31—H310.9800
C3—H30.9300C32—C331.540 (4)
C4—C51.415 (4)C32—H320.9800
C4—H40.9300C33—C341.512 (4)
C5—H50.9300C33—H330.9800
C6—C101.409 (4)C34—C351.514 (4)
C6—C71.419 (5)C34—H340.9800
C6—H60.9300C35—C361.531 (4)
C7—C81.423 (5)C35—H350.9800
C7—H70.9300C36—H36A0.9700
C8—C91.422 (5)C36—H36B0.9700
C8—H80.9300C37—C381.505 (5)
C9—C101.420 (4)C37—C391.512 (5)
C9—H90.9300C38—H38A0.9600
C10—H100.9300C38—H38B0.9600
C12—C131.391 (4)C38—H38C0.9600
C12—C171.393 (4)C39—H39A0.9600
C13—C141.372 (5)C39—H39B0.9600
C13—H130.9300C39—H39C0.9600
C14—C151.356 (6)C40—C421.499 (4)
C14—H140.9300C40—C411.510 (4)
C15—C161.397 (6)C41—H41A0.9600
C15—H150.9300C41—H41B0.9600
C16—C171.375 (5)C41—H41C0.9600
C16—H160.9300C42—H42A0.9600
C17—H170.9300C42—H42B0.9600
C18—C191.387 (4)C42—H42C0.9600
C18—C231.401 (4)
C1—Fe—C7124.99 (12)C13—C12—P117.5 (2)
C1—Fe—C8161.64 (12)C17—C12—P123.8 (2)
C7—Fe—C840.94 (13)C14—C13—C12120.3 (3)
C1—Fe—C241.92 (10)C14—C13—H13119.9
C7—Fe—C2105.79 (11)C12—C13—H13119.9
C8—Fe—C2122.79 (12)C15—C14—C13121.3 (4)
C1—Fe—C6108.19 (11)C15—C14—H14119.3
C7—Fe—C640.73 (14)C13—C14—H14119.3
C8—Fe—C668.69 (13)C14—C15—C16119.4 (3)
C2—Fe—C6120.40 (11)C14—C15—H15120.3
C1—Fe—C369.16 (11)C16—C15—H15120.3
C7—Fe—C3119.41 (12)C17—C16—C15120.0 (4)
C8—Fe—C3105.73 (13)C17—C16—H16120.0
C2—Fe—C341.07 (11)C15—C16—H16120.0
C6—Fe—C3155.36 (12)C16—C17—C12120.3 (3)
C1—Fe—C541.19 (10)C16—C17—H17119.9
C7—Fe—C5163.43 (12)C12—C17—H17119.8
C8—Fe—C5154.91 (12)C19—C18—C23118.6 (3)
C2—Fe—C569.64 (10)C19—C18—P124.2 (2)
C6—Fe—C5126.84 (12)C23—C18—P117.1 (2)
C3—Fe—C568.24 (11)C18—C19—C20120.4 (3)
C1—Fe—C9156.50 (12)C18—C19—H19119.8
C7—Fe—C968.36 (12)C20—C19—H19119.8
C8—Fe—C940.74 (13)C21—C20—C19120.4 (3)
C2—Fe—C9160.49 (12)C21—C20—H20119.8
C6—Fe—C968.10 (11)C19—C20—H20119.8
C3—Fe—C9124.19 (12)C22—C21—C20120.0 (3)
C5—Fe—C9121.16 (12)C22—C21—H21120.0
C1—Fe—C10121.76 (12)C20—C21—H21120.0
C7—Fe—C1067.98 (12)C21—C22—C23119.9 (3)
C8—Fe—C1068.32 (14)C21—C22—H22120.0
C2—Fe—C10156.46 (12)C23—C22—H22120.0
C6—Fe—C1040.14 (12)C22—C23—C18120.7 (3)
C3—Fe—C10162.01 (12)C22—C23—H23119.6
C5—Fe—C10109.51 (12)C18—C23—H23119.6
C9—Fe—C1040.43 (12)C31—O31—C34107.6 (2)
C1—Fe—C468.81 (11)C37—O32—C31108.9 (2)
C7—Fe—C4154.44 (13)C32—O33—C37108.4 (2)
C8—Fe—C4119.45 (12)C35—O34—C40107.5 (2)
C2—Fe—C469.07 (11)C40—O35—C36105.8 (2)
C6—Fe—C4163.34 (12)O31—C31—O32110.4 (3)
C3—Fe—C440.41 (11)O31—C31—C32107.9 (2)
C5—Fe—C440.29 (11)O32—C31—C32104.5 (2)
C9—Fe—C4107.72 (11)O31—C31—H31111.2
C10—Fe—C4126.40 (12)O32—C31—H31111.2
C2—P—C12102.19 (12)C32—C31—H31111.2
C2—P—C18101.10 (13)O33—C32—C31104.9 (2)
C12—P—C18103.40 (13)O33—C32—C33108.5 (2)
C11—O2—C33115.1 (2)C31—C32—C33103.9 (2)
C5—C1—C2108.1 (2)O33—C32—H32112.9
C5—C1—C11121.6 (2)C31—C32—H32112.9
C2—C1—C11130.1 (2)C33—C32—H32112.9
C5—C1—Fe70.57 (15)O2—C33—C34109.4 (2)
C2—C1—Fe69.77 (14)O2—C33—C32109.1 (2)
C11—C1—Fe121.91 (19)C34—C33—C32102.5 (2)
C3—C2—C1106.3 (2)O2—C33—H33111.8
C3—C2—P126.4 (2)C34—C33—H33111.8
C1—C2—P127.1 (2)C32—C33—H33111.8
C3—C2—Fe69.83 (14)O31—C34—C33104.6 (2)
C1—C2—Fe68.31 (14)O31—C34—C35108.9 (2)
P—C2—Fe122.15 (13)C33—C34—C35116.2 (2)
C4—C3—C2109.2 (2)O31—C34—H34109.0
C4—C3—Fe70.44 (16)C33—C34—H34109.0
C2—C3—Fe69.10 (14)C35—C34—H34109.0
C4—C3—H3125.4O34—C35—C34106.3 (2)
C2—C3—H3125.4O34—C35—C36104.9 (2)
Fe—C3—H3126.6C34—C35—C36113.4 (3)
C5—C4—C3108.2 (2)O34—C35—H35110.6
C5—C4—Fe69.26 (15)C34—C35—H35110.6
C3—C4—Fe69.15 (16)C36—C35—H35110.6
C5—C4—H4125.9O35—C36—C35103.7 (2)
C3—C4—H4125.9O35—C36—H36A111.0
Fe—C4—H4127.3C35—C36—H36A111.0
C4—C5—C1108.2 (2)O35—C36—H36B111.0
C4—C5—Fe70.45 (15)C35—C36—H36B111.0
C1—C5—Fe68.24 (15)H36A—C36—H36B109.0
C4—C5—H5125.9O32—C37—O33105.0 (2)
C1—C5—H5125.9O32—C37—C38112.3 (3)
Fe—C5—H5127.0O33—C37—C38110.3 (3)
C10—C6—C7108.1 (3)O32—C37—C39109.5 (3)
C10—C6—Fe70.55 (17)O33—C37—C39107.7 (3)
C7—C6—Fe69.20 (16)C38—C37—C39111.8 (3)
C10—C6—H6126.0C37—C38—H38A109.5
C7—C6—H6126.0C37—C38—H38B109.5
Fe—C6—H6125.9H38A—C38—H38B109.5
C6—C7—C8108.2 (3)C37—C38—H38C109.5
C6—C7—Fe70.07 (16)H38A—C38—H38C109.5
C8—C7—Fe69.57 (17)H38B—C38—H38C109.5
C6—C7—H7125.9C37—C39—H39A109.5
C8—C7—H7125.9C37—C39—H39B109.5
Fe—C7—H7126.0H39A—C39—H39B109.5
C9—C8—C7107.5 (3)C37—C39—H39C109.5
C9—C8—Fe70.20 (17)H39A—C39—H39C109.5
C7—C8—Fe69.49 (17)H39B—C39—H39C109.5
C9—C8—H8126.2O35—C40—O34104.1 (2)
C7—C8—H8126.2O35—C40—C42108.4 (3)
Fe—C8—H8125.6O34—C40—C42108.6 (2)
C10—C9—C8108.0 (3)O35—C40—C41111.6 (2)
C10—C9—Fe70.23 (16)O34—C40—C41110.6 (2)
C8—C9—Fe69.06 (16)C42—C40—C41113.1 (3)
C10—C9—H9126.0C40—C41—H41A109.5
C8—C9—H9126.0C40—C41—H41B109.5
Fe—C9—H9126.3H41A—C41—H41B109.5
C6—C10—C9108.2 (3)C40—C41—H41C109.5
C6—C10—Fe69.31 (16)H41A—C41—H41C109.5
C9—C10—Fe69.35 (17)H41B—C41—H41C109.5
C6—C10—H10125.9C40—C42—H42A109.5
C9—C10—H10125.9C40—C42—H42B109.5
Fe—C10—H10127.0H42A—C42—H42B109.5
O1—C11—O2122.8 (2)C40—C42—H42C109.5
O1—C11—C1123.7 (3)H42A—C42—H42C109.5
O2—C11—C1113.5 (2)H42B—C42—H42C109.5
C13—C12—C17118.7 (3)
C5—C1—C2—C3−0.6 (3)C21—C22—C23—C180.8 (5)
C11—C1—C2—C3175.0 (3)C19—C18—C23—C22−0.7 (4)
C5—C1—C2—P−175.07 (19)P—C18—C23—C22−176.8 (2)
C11—C1—C2—P0.6 (4)C34—O31—C31—O3289.5 (3)
C12—P—C2—C3114.0 (2)C34—O31—C31—C32−24.1 (3)
C18—P—C2—C37.5 (3)C37—O32—C31—O31−131.8 (3)
C12—P—C2—C1−72.6 (2)C37—O32—C31—C32−16.0 (3)
C18—P—C2—C1−179.1 (2)C37—O33—C32—C3118.8 (3)
C1—C2—C3—C40.3 (3)C37—O33—C32—C33129.4 (2)
P—C2—C3—C4174.88 (19)O31—C31—C32—O33115.8 (3)
C2—C3—C4—C50.0 (3)O32—C31—C32—O33−1.8 (3)
C3—C4—C5—C1−0.4 (3)O31—C31—C32—C331.9 (3)
C2—C1—C5—C40.6 (3)O32—C31—C32—C33−115.7 (3)
C11—C1—C5—C4−175.5 (2)C11—O2—C33—C34153.8 (2)
C10—C6—C7—C80.7 (3)C11—O2—C33—C32−94.9 (3)
C6—C7—C8—C9−0.5 (3)O33—C32—C33—O2152.3 (2)
C7—C8—C9—C100.1 (3)C31—C32—C33—O2−96.4 (3)
C7—C6—C10—C9−0.7 (3)O33—C32—C33—C34−91.8 (3)
C8—C9—C10—C60.4 (3)C31—C32—C33—C3419.5 (3)
C33—O2—C11—O13.9 (4)C31—O31—C34—C3337.1 (3)
C33—O2—C11—C1−177.2 (2)C31—O31—C34—C35161.9 (2)
C5—C1—C11—O1−7.2 (4)O2—C33—C34—O3181.6 (3)
C2—C1—C11—O1177.7 (3)C32—C33—C34—O31−34.1 (3)
C5—C1—C11—O2174.0 (2)O2—C33—C34—C35−38.4 (3)
C2—C1—C11—O2−1.1 (4)C32—C33—C34—C35−154.1 (2)
C2—P—C12—C13163.4 (2)C40—O34—C35—C34−132.7 (2)
C18—P—C12—C13−91.8 (2)C40—O34—C35—C36−12.2 (3)
C2—P—C12—C17−15.4 (3)O31—C34—C35—O34−178.5 (2)
C18—P—C12—C1789.3 (3)C33—C34—C35—O34−60.8 (3)
C17—C12—C13—C14−0.8 (5)O31—C34—C35—C3666.7 (3)
P—C12—C13—C14−179.8 (3)C33—C34—C35—C36−175.6 (3)
C12—C13—C14—C150.9 (5)C40—O35—C36—C3530.5 (3)
C13—C14—C15—C16−0.2 (6)O34—C35—C36—O35−11.1 (3)
C14—C15—C16—C17−0.5 (6)C34—C35—C36—O35104.6 (3)
C15—C16—C17—C120.5 (6)C31—O32—C37—O3327.8 (3)
C13—C12—C17—C160.2 (5)C31—O32—C37—C38−92.1 (3)
P—C12—C17—C16179.0 (3)C31—O32—C37—C39143.1 (3)
C2—P—C18—C1981.3 (3)C32—O33—C37—O32−29.0 (3)
C12—P—C18—C19−24.2 (3)C32—O33—C37—C3892.2 (3)
C2—P—C18—C23−102.9 (2)C32—O33—C37—C39−145.6 (3)
C12—P—C18—C23151.6 (2)C36—O35—C40—O34−38.8 (3)
C23—C18—C19—C200.0 (4)C36—O35—C40—C42−154.2 (3)
P—C18—C19—C20175.7 (2)C36—O35—C40—C4180.5 (3)
C18—C19—C20—C210.7 (5)C35—O34—C40—O3531.3 (3)
C19—C20—C21—C22−0.5 (5)C35—O34—C40—C42146.6 (3)
C20—C21—C22—C23−0.2 (5)C35—O34—C40—C41−88.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O340.932.503.357 (4)153
C9—H9···O1i0.932.543.314 (4)140

Symmetry codes: (i) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2141).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bianchini, C., Meli, A., Oberhauser, W., Segarra, A. M., Passaglia, E., Lamač, M. & Štěpnička, P. (2008). Eur. J. Inorg. Chem. pp. 441–452.
  • Breit, B. & Breuninger, D. (2004). J. Am. Chem. Soc.126, 10244–10245. [PubMed]
  • Breit, B. & Breuninger, D. (2005a). Synthesis, pp. 2782–2786.
  • Breit, B. & Breuninger, D. (2005b). Synthesis, pp. 147–157.
  • Breit, B. & Breuninger, D. (2005c). Eur. J. Org. Chem. pp. 3916–3929.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Lamač, M., Císařová, I. & Štěpnička, P. (2009). New J. Chem.33, 1549–1562.
  • Lamač, M., Tauchman, J., Císařová, I. & Štěpnička, P. (2007). Organometallics, 26, 5042–5049.
  • Longmire, J. M., Wang, B. & Zhang, X. (2000). Tetrahedron Lett.41, 5435–5439.
  • Longmire, J. M., Wang, B. & Zhang, X. (2002). J. Am. Chem. Soc.124, 13400–13401. [PubMed]
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Štěpnička, P. (2002). New J. Chem.26, 567–575.
  • You, S.-L., Hou, X.-L., Dai, L.-X., Cao, B.-X. & Sun, J. (2000). Chem. Commun. pp. 1933–1934.
  • You, S.-L., Hou, X.-L., Dai, L.-X. & Zhu, X.-Z. (2001). Org. Lett.3, 149–151. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography