PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1262–m1263.
Published online 2009 September 30. doi:  10.1107/S1600536809038331
PMCID: PMC2970337

Poly[(μ3-5-bromo­nicotinato)(5-bromo­nicotinato)copper(II)]

Abstract

The title coordination polymer, [Cu(C6H3BrNO2)2]n, is composed of two structurally similar two-dimensional coordination polymers (twin layers). Both of them have the same chemical composition but they display different bond lengths and angles. In each layer, two N atoms and four carboxyl­ate O atoms from the bridging 5-bromo­nicotinate ligands and four carboxyl­ate O atoms from the terminal 5-bromo­nicotinate ligands bind to two CuII atoms to form a dinuclear paddle-wheel-like pattern. Adjacent paddle wheels are further linked by bridging 5-bromo­nicotinate groups to generate a two-dimensional coordination polymer; neighboring twin-like layers are finally stacked through π–π stacking interactions between adjacent pyridine rings [perpendicular distance of 3.626 (2) Å] in a ‘sandwich’ manner, thus generating a three-dimensional supra­molecular structure.

Related literature

For related literature on paddle-wheel secondary building units, see: Chen et al. (2006 [triangle]); Xue et al. (2007 [triangle]); Striegler & Dittel (2003 [triangle]); Ma & Moulton (2007 [triangle]); Banerjee et al. (2008 [triangle]); Saravanakumar et al. (2004 [triangle]). For similar structures, see: Yakovenko et al. (2009 [triangle]); Xue et al. (2007 [triangle]). For τ distortions of coordination polyhedra, see: Addison & Rao (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1262-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H3BrNO2)2]
  • M r = 465.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1262-efi1.jpg
  • a = 21.542 (4) Å
  • b = 11.746 (2) Å
  • c = 12.271 (2) Å
  • β = 104.31 (3)°
  • V = 3008.6 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.78 mm−1
  • T = 173 K
  • 0.33 × 0.31 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.213, T max = 0.305
  • 15126 measured reflections
  • 6502 independent reflections
  • 4904 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.085
  • S = 1.03
  • 6502 reflections
  • 379 parameters
  • H-atom parameters constrained
  • Δρmax = 1.40 e Å−3
  • Δρmin = −1.34 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT (Bruker, 1998 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038331/bg2298sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038331/bg2298Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province (grant No. 0430064), People’s Republic of China.

supplementary crystallographic information

Comment

Paddle-wheel secondary building units (SBUs) M2(RCOO)4 are useful building blocks for constructing complexes and 1D to 3D coordination polymers through bifunctional ligands. Research interest in these compounds with copper(II) paddle-wheel SBUs come from their structural diversity (Chen, et al., 2006; Xue et al., 2007) and potential applications in supramolecular medicinal chemistry (Ma & Moulton 2007), sugar discrimination (Striegler & Dittel 2003), molecular magnets (Banerjee et al., 2008; Saravanakumar et al., 2004; Yakovenko, et al., 2009), respectively. However, most reported Cu(II) complexes with paddle-whell secondary building units are constructed by mixed-ligands, either two kinds of organic ligands or one organic ligand and water molecules (Ma & Moulton 2007). 5-Bromonicotinic acid is a bifunctional ligand with two carboxylic oxygen atoms and one pyridyl nitrogen atom, and it can be coordinated to a metal centre in a variety of ways to create structural diversity. Here, we report a new two-dimentional coordination polymer with Cu(II) paddle-wheel SBUs formed from the organic ligand 5-Bromonicotinic acid and Cu(II) ions.

The title coordination polymer, twin-poly[copper(II) (η-N,O,O-5-bromonicotinato)(η-O,O-5-bromonicotinato)] (I), contains two similar, independent groups in the asymmetric unit consisting of two copper atoms (Cu1 and Cu2) and four 5-bromonicotinato ligands each. The coordination enviroments of the two copper atoms present a nearly perfect [CuO4N] square pyramid geometry, characterized by τ factors (indicative of the distortion degree of such a coordination sphere, Addison & Rao, 1984), of 0.01 for Cu1 and 0.003 for Cu2. The bond lengths and angles around Cu1 and Cu2 are standard for a Jahn-Teller active square pyramidal Cu2+ ion, with basal Cu—O bond lengths ranging from 1.957 (3) Å to 1.979 (3) Å (1.952 (3)–1.976 (3) Å ) and a longer axial bond distance to the the ligand nitrogen atom of 2.150 (3) Å (2.164 (3) Å) for Cu1 (Cu2), respectively (Fig. 1).

As previously stated, each copper atom (Cu1 or Cu2) is located in a penta-coordinated geometry and is bonded by four oxygen atoms from carboxylate anions and one nitrogen atom from the axial ligand, which can also be considered as a molecular square when viewed along the axial direction. When four carboxylate groups of the ligands bridge to two asymmetric copper atoms in a syn-syn manner, a dinuclear paddle-wheel pattern is formed, with Cu—Cu distances of 2.6355 (10) Å for Cu1 and 2.6423 (10) Å for Cu2. These values are similar to those in the paddle-wheel copper(II) complex reported in Yakovenko, et al. 2009, but shorter than the corresponding ones in Xue et al. 2007.

When adjacent Cu1 paddle-wheels are bridged by the η-N,O,O-5-bromonicotinato groups, a layer motif (hereafter "A", [Cu1(η-N,O,O-5-bromonicotinato)(η-O,O-5-bromonicotinato)]n ), is formed along (100). Similarly, those resulting from Cu2 generate another layer motif ( "B", [Cu2(η-N,O,O-5-bromonicotinato)(η-O,O-5-bromonicotinato)]n) which lies parallel to the former (Fig. 2). Finally, both A and B layers contact along the c axial direction generating a new, twin-like coordination polymer (Fig. 3). Neighboring twin-like layers are further stacked via van der Waals interactions in a sandwich way extending the packing into a three-dimensional supramolecular structure. No significant hydrogen bonds were found in the crystal structure.

Experimental

Copper nitrate trihydrate (0.4 mmol, 0.0966 g) in 10 ml water and 5-Bromonicotinic acid (0.4 mmol, 0.0808 g) were sealed in a Teflon-line autoclave and heated to 433 K for 72 h, after which the mixture was cooled down to room temperatureat at a rate of 5 K per hour. Blue single crystals suitable for x-ray crystallography analysis were obtained with a yield of 46 percent. IR (cm-1, KBr): 3447m, 3057w, 1639vs, 1557 s, 1443vs, 1393vs, 1292 s, 1238w, 1178w, 1143m, 1024m, 904w, 877m, 781 s, 747vs, 685m, 497 s.

Refinement

Hydrogen atoms of the 5-bromonicotinato groups were placed at calculated positions and allowed to ride on their respective parent atoms with C—H distances in the range of 0.96–0.98 Å. The structure contains solvent accessible voids of 61 Å3 in its lattice, slightly larger than the threshold voids (40 Å3) for general accommodable water molecules. However, no trace of unaccounted for electron density could be detected in the difference maps, for what it can be safely assumed that any eventually trapped solvato molecules would not occupy stable positions.

Figures

Fig. 1.
The coordination environment of Cu1 and Cu2 atoms in the title compound, showing displacement ellipsoids at the 35% probability level. Symmetry operator: i = 1-x, 1-y, 1-z; ii = 2-x, 1-y, -z;
Fig. 2.
A (100) view of the structure showing a twin two-dimensional coordination polymer, representing either layer A or layer B (Hydrogen and Bromine atoms are omitted for clarity).
Fig. 3.
A [001] view of the packing pattern of the twin layers.

Crystal data

[Cu(C6H3BrNO2)2]Z = 8
Mr = 465.55F(000) = 1784
Monoclinic, P21/cDx = 2.056 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 21.542 (4) Åθ = 2.4–27.0°
b = 11.746 (2) ŵ = 6.78 mm1
c = 12.271 (2) ÅT = 173 K
β = 104.31 (3)°Block, blue
V = 3008.6 (9) Å30.33 × 0.31 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer6502 independent reflections
Radiation source: fine-focus sealed tube4904 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −27→15
Tmin = 0.213, Tmax = 0.305k = −12→15
15126 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0329P)2 + 6.737P] where P = (Fo2 + 2Fc2)/3
6502 reflections(Δ/σ)max = 0.002
379 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = −1.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.36048 (3)1.10765 (4)0.45763 (4)0.04098 (14)
Br20.22167 (2)0.26934 (6)0.04959 (4)0.04929 (17)
Br30.65085 (2)0.30249 (5)−0.19347 (4)0.04179 (15)
Br41.13503 (3)0.60918 (5)0.58445 (4)0.05030 (18)
Cu10.48131 (2)0.52244 (4)0.59219 (4)0.01204 (10)
Cu21.02261 (2)0.48099 (4)0.10871 (4)0.01222 (10)
N10.46040 (15)0.5444 (3)0.7534 (3)0.0155 (7)
N20.20763 (17)0.4113 (4)0.3472 (3)0.0318 (9)
N31.04924 (15)0.4524 (3)0.2885 (3)0.0158 (7)
N40.76951 (19)0.2695 (4)0.1228 (3)0.0389 (10)
O10.39446 (13)0.4902 (3)0.5031 (2)0.0261 (7)
O20.57262 (12)0.5555 (3)0.6502 (2)0.0223 (6)
O30.49764 (14)0.3579 (2)0.6129 (2)0.0223 (6)
O40.46875 (13)0.6827 (2)0.5418 (2)0.0207 (6)
O51.04325 (13)0.3262 (2)0.0652 (2)0.0179 (6)
O60.99585 (14)0.6387 (2)0.1185 (2)0.0247 (7)
O70.93424 (13)0.4281 (3)0.0966 (2)0.0231 (6)
O81.10483 (13)0.5363 (2)0.0872 (2)0.0239 (7)
C10.48052 (18)0.7079 (3)0.4500 (3)0.0157 (8)
C20.46378 (17)0.8249 (3)0.4044 (3)0.0128 (7)
C30.42926 (18)0.9003 (3)0.4536 (3)0.0176 (8)
H3B0.41910.88210.52340.080*
C40.41056 (19)1.0027 (3)0.4004 (3)0.0205 (9)
C50.42629 (19)0.4721 (3)0.7994 (3)0.0198 (8)
H5A0.41440.40510.76570.050*
C60.47896 (17)0.6433 (3)0.8054 (3)0.0153 (8)
H6A0.50270.68960.77250.050*
C70.38534 (18)0.4560 (3)0.4041 (3)0.0169 (8)
C80.31838 (17)0.4236 (3)0.3453 (3)0.0175 (8)
C90.30550 (19)0.3730 (4)0.2396 (4)0.0241 (9)
H9A0.33880.36060.20150.080*
C100.24266 (19)0.3414 (4)0.1909 (3)0.0241 (9)
C110.19555 (19)0.3611 (4)0.2464 (4)0.0249 (9)
H11A0.15250.33810.21150.080*
C120.2679 (2)0.4414 (4)0.3946 (4)0.0260 (9)
H12A0.27690.47720.46720.080*
C130.89075 (18)0.4275 (3)0.0067 (3)0.0176 (8)
C140.82826 (18)0.3749 (3)0.0129 (3)0.0177 (8)
C150.77755 (19)0.3685 (3)−0.0817 (3)0.0208 (9)
H15A0.78030.4012−0.15200.080*
C160.72308 (18)0.3128 (4)−0.0705 (3)0.0226 (9)
C170.7203 (2)0.2648 (4)0.0305 (4)0.0325 (11)
H17A0.68170.22660.03540.080*
C180.8221 (2)0.3253 (4)0.1122 (4)0.0301 (10)
H18A0.85730.33130.17740.080*
C191.02976 (18)0.2986 (3)−0.0370 (3)0.0152 (8)
C201.04662 (17)0.1814 (3)−0.0668 (3)0.0132 (7)
C211.07623 (18)0.1035 (3)0.0149 (3)0.0154 (8)
H21A1.08410.12300.09500.050*
C221.09175 (19)0.5010 (3)0.4790 (3)0.0191 (8)
C231.07778 (18)0.5271 (3)0.3658 (3)0.0182 (8)
H23A1.08920.60070.34280.080*
C241.03400 (17)0.3506 (3)0.3220 (3)0.0151 (8)
H24A1.01140.29880.26260.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0617 (3)0.0352 (3)0.0350 (3)0.0291 (2)0.0292 (2)0.0086 (2)
Br20.0306 (3)0.0809 (4)0.0360 (3)−0.0217 (3)0.0076 (2)−0.0310 (3)
Br30.0203 (2)0.0719 (4)0.0300 (3)−0.0167 (2)0.00016 (18)−0.0005 (2)
Br40.0942 (5)0.0338 (3)0.0177 (2)−0.0389 (3)0.0040 (2)−0.0080 (2)
Cu10.0157 (2)0.0104 (2)0.0101 (2)−0.00042 (17)0.00348 (17)−0.00025 (17)
Cu20.0160 (2)0.0096 (2)0.0094 (2)−0.00019 (17)0.00013 (17)−0.00022 (17)
N10.0182 (16)0.0147 (18)0.0131 (15)−0.0002 (12)0.0029 (13)−0.0016 (13)
N20.0186 (19)0.050 (3)0.026 (2)0.0006 (17)0.0042 (15)−0.0037 (18)
N30.0203 (17)0.0119 (17)0.0147 (16)−0.0012 (12)0.0031 (13)0.0012 (12)
N40.032 (2)0.060 (3)0.027 (2)−0.011 (2)0.0113 (17)0.008 (2)
O10.0174 (15)0.0376 (19)0.0224 (15)−0.0036 (12)0.0032 (12)−0.0094 (13)
O20.0145 (14)0.0315 (17)0.0205 (15)−0.0023 (12)0.0034 (11)−0.0019 (12)
O30.0369 (17)0.0149 (15)0.0186 (14)0.0039 (12)0.0136 (13)0.0021 (12)
O40.0353 (17)0.0144 (15)0.0163 (14)0.0052 (12)0.0137 (12)0.0061 (11)
O50.0270 (15)0.0137 (14)0.0112 (13)0.0033 (11)0.0016 (11)−0.0041 (11)
O60.0450 (18)0.0119 (15)0.0146 (14)0.0080 (13)0.0023 (13)0.0011 (11)
O70.0167 (14)0.0336 (18)0.0182 (15)−0.0019 (12)0.0032 (11)−0.0022 (13)
O80.0197 (15)0.0284 (18)0.0199 (15)−0.0079 (12)−0.0018 (11)0.0085 (12)
C10.0186 (19)0.012 (2)0.0155 (19)−0.0014 (15)0.0026 (15)0.0005 (15)
C20.0133 (18)0.015 (2)0.0089 (17)−0.0015 (14)0.0002 (13)0.0002 (14)
C30.020 (2)0.017 (2)0.0148 (19)−0.0020 (15)0.0037 (15)0.0015 (16)
C40.026 (2)0.017 (2)0.022 (2)0.0073 (16)0.0133 (17)−0.0017 (16)
C50.027 (2)0.015 (2)0.018 (2)−0.0065 (16)0.0073 (16)−0.0065 (16)
C60.0158 (19)0.013 (2)0.0171 (19)0.0023 (14)0.0038 (15)0.0000 (15)
C70.019 (2)0.011 (2)0.020 (2)0.0009 (15)0.0044 (16)0.0032 (15)
C80.0137 (19)0.018 (2)0.019 (2)0.0009 (15)0.0003 (15)0.0000 (16)
C90.019 (2)0.029 (3)0.024 (2)−0.0038 (17)0.0038 (17)−0.0036 (18)
C100.020 (2)0.030 (3)0.020 (2)−0.0046 (17)0.0007 (17)−0.0026 (18)
C110.017 (2)0.031 (3)0.025 (2)−0.0019 (17)0.0021 (17)0.0012 (19)
C120.021 (2)0.034 (3)0.021 (2)0.0016 (18)0.0025 (17)−0.0024 (19)
C130.020 (2)0.0084 (19)0.026 (2)0.0012 (15)0.0073 (17)−0.0038 (16)
C140.020 (2)0.013 (2)0.020 (2)−0.0019 (15)0.0047 (16)−0.0020 (16)
C150.021 (2)0.016 (2)0.025 (2)−0.0002 (16)0.0051 (17)−0.0003 (17)
C160.016 (2)0.027 (2)0.023 (2)−0.0009 (17)0.0006 (16)−0.0026 (18)
C170.025 (2)0.041 (3)0.033 (3)−0.007 (2)0.011 (2)0.005 (2)
C180.025 (2)0.046 (3)0.018 (2)−0.005 (2)0.0044 (18)0.001 (2)
C190.0194 (19)0.0101 (19)0.0167 (19)−0.0020 (15)0.0055 (15)−0.0018 (15)
C200.0160 (18)0.0079 (19)0.0165 (19)0.0006 (14)0.0052 (14)−0.0035 (14)
C210.022 (2)0.015 (2)0.0075 (17)0.0018 (15)0.0015 (14)−0.0012 (14)
C220.028 (2)0.016 (2)0.0123 (18)−0.0059 (16)0.0021 (16)−0.0051 (15)
C230.023 (2)0.013 (2)0.018 (2)−0.0047 (15)0.0039 (16)−0.0005 (16)
C240.0185 (19)0.0119 (19)0.0139 (18)0.0004 (15)0.0019 (15)0.0010 (15)

Geometric parameters (Å, °)

Br1—C41.885 (4)C3—C41.380 (5)
Br2—C101.881 (4)C3—H3B0.9600
Br3—C161.885 (4)C4—C5iii1.394 (5)
Br4—C221.887 (4)C5—C4iv1.394 (5)
Cu1—O11.957 (3)C5—H5A0.8971
Cu1—O21.958 (3)C6—C2iv1.386 (5)
Cu1—O31.969 (3)C6—H6A0.9065
Cu1—O41.979 (3)C7—O2i1.257 (5)
Cu1—N12.150 (3)C7—C81.494 (5)
Cu1—Cu1i2.6355 (10)C8—C121.385 (6)
Cu2—O61.952 (3)C8—C91.390 (6)
Cu2—O81.965 (3)C9—C101.389 (5)
Cu2—O71.973 (3)C9—H9A0.9601
Cu2—O51.976 (3)C10—C111.375 (6)
Cu2—N32.164 (3)C11—H11A0.9599
Cu2—Cu2ii2.6423 (10)C12—H12A0.9601
N1—C51.336 (5)C13—O8ii1.254 (5)
N1—C61.338 (5)C13—C141.500 (5)
N2—C121.333 (5)C14—C151.385 (6)
N2—C111.337 (5)C14—C181.386 (6)
N3—C231.327 (5)C15—C161.379 (6)
N3—C241.332 (5)C15—H15A0.9600
N4—C181.343 (6)C16—C171.376 (6)
N4—C171.347 (6)C17—H17A0.9601
O1—C71.247 (5)C18—H18A0.9600
O2—C7i1.257 (5)C19—O6ii1.254 (4)
O3—C1i1.263 (5)C19—C201.492 (5)
O4—C11.250 (4)C20—C24v1.376 (5)
O5—C191.258 (4)C20—C211.390 (5)
O6—C19ii1.254 (4)C21—C22v1.373 (5)
O7—C131.258 (5)C21—H21A0.9821
O8—C13ii1.254 (5)C22—C21vi1.373 (5)
C1—O3i1.263 (5)C22—C231.381 (5)
C1—C21.494 (5)C23—H23A0.9600
C2—C6iii1.386 (5)C24—C20vi1.376 (5)
C2—C31.386 (5)C24—H24A0.9814
O1—Cu1—O2167.78 (12)N1—C5—H5A119.1
O1—Cu1—O389.88 (13)C4iv—C5—H5A119.5
O2—Cu1—O390.95 (12)N1—C6—C2iv123.0 (4)
O1—Cu1—O488.36 (13)N1—C6—H6A116.4
O2—Cu1—O488.40 (12)C2iv—C6—H6A120.7
O3—Cu1—O4168.51 (11)O1—C7—O2i126.1 (4)
O1—Cu1—N198.55 (12)O1—C7—C8117.0 (3)
O2—Cu1—N193.55 (12)O2i—C7—C8116.9 (3)
O3—Cu1—N194.02 (11)C12—C8—C9118.3 (4)
O4—Cu1—N197.47 (11)C12—C8—C7121.3 (4)
O1—Cu1—Cu1i86.23 (9)C9—C8—C7120.4 (3)
O2—Cu1—Cu1i81.90 (9)C10—C9—C8117.7 (4)
O3—Cu1—Cu1i80.33 (8)C10—C9—H9A121.1
O4—Cu1—Cu1i88.23 (8)C8—C9—H9A121.2
N1—Cu1—Cu1i172.64 (9)C11—C10—C9120.1 (4)
O6—Cu2—O889.09 (13)C11—C10—Br2119.6 (3)
O6—Cu2—O790.52 (13)C9—C10—Br2120.3 (3)
O8—Cu2—O7168.27 (11)N2—C11—C10122.3 (4)
O6—Cu2—O5168.22 (11)N2—C11—H11A118.9
O8—Cu2—O589.85 (12)C10—C11—H11A118.8
O7—Cu2—O588.14 (12)N2—C12—C8123.7 (4)
O6—Cu2—N395.31 (12)N2—C12—H12A118.3
O8—Cu2—N399.66 (12)C8—C12—H12A118.0
O7—Cu2—N392.04 (12)O8ii—C13—O7126.4 (4)
O5—Cu2—N396.44 (11)O8ii—C13—C14117.3 (3)
O6—Cu2—Cu2ii82.01 (8)O7—C13—C14116.2 (4)
O8—Cu2—Cu2ii85.86 (9)C15—C14—C18119.1 (4)
O7—Cu2—Cu2ii82.48 (9)C15—C14—C13120.8 (4)
O5—Cu2—Cu2ii86.21 (8)C18—C14—C13120.0 (4)
N3—Cu2—Cu2ii173.85 (9)C16—C15—C14117.2 (4)
C5—N1—C6118.8 (3)C16—C15—H15A121.5
C5—N1—Cu1125.1 (3)C14—C15—H15A121.4
C6—N1—Cu1115.9 (2)C17—C16—C15120.8 (4)
C12—N2—C11117.8 (4)C17—C16—Br3118.9 (3)
C23—N3—C24118.6 (3)C15—C16—Br3120.3 (3)
C23—N3—Cu2125.9 (3)N4—C17—C16122.7 (4)
C24—N3—Cu2115.5 (2)N4—C17—H17A118.7
C18—N4—C17116.5 (4)C16—C17—H17A118.6
C7—O1—Cu1120.4 (3)N4—C18—C14123.8 (4)
C7i—O2—Cu1125.2 (3)N4—C18—H18A117.9
C1i—O3—Cu1127.1 (2)C14—C18—H18A118.3
C1—O4—Cu1117.7 (2)O6ii—C19—O5126.2 (4)
C19—O5—Cu2119.7 (2)O6ii—C19—C20115.6 (3)
C19ii—O6—Cu2125.9 (3)O5—C19—C20118.2 (3)
C13—O7—Cu2124.3 (3)C24v—C20—C21118.6 (3)
C13ii—O8—Cu2120.8 (2)C24v—C20—C19119.6 (3)
O4—C1—O3i126.5 (4)C21—C20—C19121.8 (3)
O4—C1—C2118.1 (3)C22v—C21—C20117.5 (3)
O3i—C1—C2115.2 (3)C22v—C21—H21A122.2
C6iii—C2—C3118.6 (3)C20—C21—H21A120.3
C6iii—C2—C1119.2 (3)C21vi—C22—C23120.7 (3)
C3—C2—C1122.0 (3)C21vi—C22—Br4120.0 (3)
C4—C3—C2118.4 (4)C23—C22—Br4119.2 (3)
C4—C3—H3B120.8N3—C23—C22121.4 (4)
C2—C3—H3B120.8N3—C23—H23A119.5
C3—C4—C5iii119.9 (4)C22—C23—H23A119.2
C3—C4—Br1121.4 (3)N3—C24—C20vi123.2 (3)
C5iii—C4—Br1118.7 (3)N3—C24—H24A116.2
N1—C5—C4iv121.4 (4)C20vi—C24—H24A120.5

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z; (iii) x, −y+3/2, z−1/2; (iv) x, −y+3/2, z+1/2; (v) x, −y+1/2, z−1/2; (vi) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2298).

References

  • Addison, A. W. & Rao, T. N. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Banerjee, A., Sarkar, S., Chopra, D., Colacio, E. & Rajak, K. K. (2008). Inorg. Chem.47, 4023–4031. [PubMed]
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, B. L., Fronczek, F. R., Courtney, B. H. & Zapata, F. (2006). Cryst. Growth Des.6, 825–828.
  • Ma, Z.-B. & Moulton, B. (2007). Mol. Pharm.4, 373–385. [PubMed]
  • Saravanakumar, D., Sengottuvelan, N., Narayanan, V., Kandaswamy, M., Chinnakali, K., Senthilkumar, G. & Fun, H.-K. (2004). Eur. J. Inorg. Chem. pp. 872–878.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Striegler, S. & Dittel, M. (2003). J. Am. Chem. Soc.125, 11518–11524. [PubMed]
  • Xue, D.-X., Lin, Y.-Y., Cheng, X.-N. & Chen, X.-M. (2007). Cryst. Growth Des.7, 1332–1336.
  • Yakovenko, A. V., Kolotilov, S. V., Cador, O., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2009). Eur. J. Inorg. Chem. pp. 2354–2361.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography