PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2365–o2366.
Published online 2009 September 5. doi:  10.1107/S1600536809035363
PMCID: PMC2970333

4-[(E)-(2,4-Difluoro­phen­yl)(hydroxy­imino)meth­yl]piperidinium picrate

Abstract

The title compound, C12H15F2N2O+·C6H2N3O7 , a picrate salt of 4-[(E)-(2,4-difluoro­phen­yl)(hydroxy­imino)meth­yl]piper­idine, crystallizes with two independent mol­ecules in a cation–anion pair in the asymmetric unit. In the cation, a methyl group is tris­ubstituted by hydroxy­imino, piperidin-4-yl and 2,4-difluoro­phenyl groups, the latter of which contains an F atom disordered over two positions in the ring [occupancy ratio 0.631 (4):0.369 (4)]. The mean plane of the hydr­oxy group is in a synclinical conformation nearly orthogonal [N—C—C—C = 72.44 (19)°] to the mean plane of the piperidine ring, which adopts a slightly distorted chair conformation. The dihedral angle between the mean plane of the 2,4-difluoro­phenyl and piperidin-4-yl groups is 60.2 (3)°. In the picrate anion, the mean planes of the two o-NO2 and single p-NO2 groups adopt twist angles of 5.7 (2), 25.3 (7) and 8.3 (6)°, respectively, with the attached planar benzene ring. The dihedral angle between the mean planes of the benzene ring in the picrate anion and those in the hydroxy­imino, piperidin-4-yl and 2,4-difluoro­phenyl groups in the cation are 84.9 (7), 78.9 (4) and 65.1 (1)°, respectively. Extensive hydrogen-bond inter­actions occur between the cation–anion pair, which help to establish the crystal packing in the unit cell. This includes dual three-center hydrogen bonds with the piperidin-4-yl group, the phenolate and o-NO2 O atoms of the picrate anion at different positions in the unit cell, which form separate N—H(...)(O,O) bifurcated inter­molecular hydrogen-bond inter­actions. Also, the hydr­oxy group forms a separate hydrogen bond with a nearby piperidin-4-yl N atom, thus providing two groups of hydrogen bonds, which form an infinite two-dimensional network along (011).

Related literature

(Z)-(2,4-Difluoro­phen­yl)(piperidin-4-yl)methanone oxime is an inter­mediate in the preparation of risperidone, an anti­psychotic used to treat schizophrenia, see: Umbricht & Kane, (1995 [triangle]). For related structures, see: Hu et al. (2008 [triangle]); Jottier et al. (1992 [triangle]); Naveen et al. (2007 [triangle]); Ravikumar & Sridhar (2006 [triangle]); Yathirajan et al. (2005 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]) and for Mogul, see: Bruno et al. (2004 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2365-scheme1.jpg

Experimental

Crystal data

  • C12H15F2N2O+·C6H2N3O7
  • M r = 469.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2365-efi1.jpg
  • a = 6.0926 (4) Å
  • b = 13.5364 (8) Å
  • c = 24.0417 (14) Å
  • β = 92.671 (6)°
  • V = 1980.63 (19) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 1.20 mm−1
  • T = 110 K
  • 0.49 × 0.45 × 0.38 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector
  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.733, T max = 1.000
  • 7628 measured reflections
  • 3910 independent reflections
  • 3475 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.115
  • S = 1.05
  • 3910 reflections
  • 303 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035363/zq2003sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035363/zq2003Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

LM thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

The compound, C12H14F2N2O, (Z)-(2,4-difluorophenyl)(piperidin-4-yl)methanone oxime is an intermediate for the preparation of risperidone. Risperidone contains the functional groups of benzisoxazole and piperidine as part of its molecular structure. Risperidone is an antipsychotic used to treat schizophrenia (Umbricht & Kane, 1995). This drug belongs to a class of anti-psychotic drugs known as neuroleptics and is a strong dopamine antagonist. It has high affinity for D2 dopaminergic receptors.

Related crystal structures of 3-{2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-piperidinyl]ethyl} -2,9-dimethyl-4H-pyrido [1,2-a]pyrimidin-4-one (ocaperidone) (Jottier et al., 1992), 6-fluoro-3-(4-piperidinio)benz[d]isoxazole chloride (Yathirajan et al., 2005), 3-(2-chloroethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido [1,2-a]pyrimidin-1-ium chloride (Ravikumar & Sridhar, 2006), (2-ethoxyphenyl)[4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl]methanone (Naveen et al., 2007), (anthracen-9-yl)(piperidin-1-yl)methanone (Hu et al., 2008) have been reported. The present paper reports the interaction of (Z)-(2,4-difluorophenyl)(piperidin-4-yl)methanone oxime as an electron donor with picric acid as electron acceptor which resulted in the formation of a charge transfer complex of the title compound, C18H17F2N5O8, (I).

The title compound, C12H15F2N2O+ C6H2N3O7-, a picrate salt of (E)-1-(2,4-difluorophenyl)-N-hydroxy-1-(piperidin-4-yl) methanimin, crystallizes with two independent molecules in a cation-anion pair in the asymmetric unit. Bond lengths and angles in both the cation and anion can be regarded as normal (Cambridge Structural Database, Version 5.30, February, 2009; Allen, 2002, Mogul, Version 1.1.3; Bruno et al., 2004). In the cation, a tri-substituted methyl group contains N-hydroxyl, piperidin-4-yl and 2,4-difluorophenyl groups, the latter of which contains a fluoro group (F1A & F1B) disordered over two positions (C2 & C6; Fig. 1), in the phenyl ring, respectively. The mean plane of the hydroxyl group is in a syn-clinical conformation (+sc, N1—C7—C8—C9 = 72.44 (19)°) nearly orthogonal to the mean plane of the piperidine ring which adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and [var phi] of 0.5781 (17) Å, 1.8 (2)° and 109 (8)°, respectively, For an ideal chair, θ = 0.0°. The dihedral angle between the mean plane of the 2,4-difluorophenyl and piperidin-4-yl groups is 60.2 (3)°. In the picrate anion, the mean planes of the two o-NO2 and single p-NO2 groups adopts twist angles of 5.7 (2)°, 25.3 (7)° and 8.3 (6)° with the planar benzene group, respectively. The dihedral angle between the mean planes of the benzene group in the picrate anion and those in the N-hydroxyl, piperidin-4-yl and 2,4-difluorophenyl groups in the cation are 76.9 (6)° and 65.0 (7)°, respectively. Extensive hydrogen bond interactions occur between the cation-anion pair which help to establish crystal packing in the unit cell (Fig.2). This includes dual three-center hydrogen bonds with the N2 atom of the piperidin-4-yl group, and the phenolate and o-NO2 oxygen atoms of the picrate anions at different positions in the unit cell. The H2A and H2B atoms bonded to N2 in the piperidin-4-yl group each forms a separate, N—H···(O,O), bifrucated hydrogen bond intermolecular interaction with two different phenolate and o-NO2 oxygen atoms of the picrate anion at N2–H2A···(O1B,O21B) & N2–H2B···(O1B#2,O62B#2) (#2 = -x + 1, -y + 2, -z + 1; Table 1). Also, the hydroxyl group forms a separate hydrogen bond with a nearby N1 amino group (O1–H1A···N1; -x + 1, -y + 1, -z + 1). These two groups of hydrogen bonds form an infinite 2-D network along the (011) plane of the unit cell (Fig. 2). In addition, a weak C–H···O π-ring intermolecular hydrogen bond interaction [C3B—H3BA···Cg2; H3BA···Cg2 = 2.95 Å, C3B···Cg2 = 3.75 (4) Å, C3B—H3BA···Cg2 = 143°; Cg2 = C1–C6)] is observed which helps to stablize crystal packing.

Experimental

The title compound was synthesized by adding a saturated solution of picric acid (0.92 g, 2 mmol) in 10 ml me thanol to a solution of (Z)-(2,4-difluorophenyl)(piperidin-4-yl)methanone oxime (0.49 g, 2 mmol) in 10 ml me thanol. A yellow color developed and the solution was allowed to evaporate slowly at room temperature. The yellow colored complex formed was filtered off, washed several times with diethyl ether and then dried over CaCl2 (yield: 64.5%). X-ray quality crystals were grown from a methanol solution. The melting range was found to be 459–462 K. Analysis found (calculated) for C18H17F2N5O8 (%): C: 46.07 (46.06), H: 3.85 (3.65), N: 14.95 (14.92).

Refinement

The hydroxyl hydrogen, H1A, was obtained from a difference fourier map. All of the remaining H atoms were placed in their calculated positions and then refined using riding models with N—H = 0.92 Å, C—H = 0.95–1.00 Å, and with Uiso(H) = 1.18–1.218Ueq(C,N).

Figures

Fig. 1.
Molecular structure of the title compound, C12H15F2N2O+ C6H2N3O7-, showing the cation-anion unit that comprises the asymmetric unit, the disorder of F1 (F1A & F1B) over two positions (C2 & C6) in the 2,4-difluorophenyl group of the cation, ...
Fig. 2.
Packing diagram of the title compound, (I), viewed down the a axis. Dashed lines indicate strong N—H···O and weak C—H···O hydrogen bond interactions which produces a two-dimensional network ...

Crystal data

C12H15F2N2O+·C6H2N3O7F(000) = 968
Mr = 469.37Dx = 1.574 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 4482 reflections
a = 6.0926 (4) Åθ = 4.9–74.1°
b = 13.5364 (8) ŵ = 1.20 mm1
c = 24.0417 (14) ÅT = 110 K
β = 92.671 (6)°Chunk, pale yellow
V = 1980.63 (19) Å30.49 × 0.45 × 0.38 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector3910 independent reflections
Radiation source: Enhance (Cu) X-ray Source3475 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 4.9°
ω scansh = −6→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −11→16
Tmin = 0.734, Tmax = 1.000l = −29→29
7628 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0619P)2 + 1.0569P] where P = (Fo2 + 2Fc2)/3
3910 reflections(Δ/σ)max < 0.001
303 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.34d (release 27-02-2009 CrysAlis171 .NET) (compiled Feb 27 2009,15:38:38) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
F1A0.4117 (3)0.58470 (13)0.70084 (6)0.0326 (4)0.631 (4)
F1B−0.0826 (5)0.4942 (2)0.55863 (11)0.0326 (4)0.37
F2−0.2362 (2)0.41781 (9)0.74432 (5)0.0519 (4)
O10.3558 (2)0.44002 (9)0.54602 (6)0.0389 (3)
H1A0.41710.41590.51850.058*
N10.3999 (3)0.54236 (11)0.54919 (6)0.0309 (3)
N20.5153 (2)0.88427 (9)0.55578 (5)0.0199 (3)
H2A0.56530.86650.52170.024*
H2B0.53900.95090.56040.024*
C10.1660 (3)0.53694 (11)0.62919 (6)0.0214 (3)
C20.2218 (3)0.53902 (12)0.68601 (7)0.0249 (3)
H20.35590.56950.69820.030*0.369 (4)
C30.0908 (3)0.49879 (12)0.72519 (7)0.0299 (4)
H3A0.13310.49990.76370.036*
C4−0.1038 (3)0.45693 (13)0.70620 (8)0.0332 (4)
C5−0.1698 (3)0.45176 (13)0.65070 (8)0.0321 (4)
H5A−0.30520.42180.63900.039*
C6−0.0313 (3)0.49188 (12)0.61243 (7)0.0261 (3)
H6−0.07230.48850.57390.031*0.631 (4)
C70.3115 (3)0.58538 (12)0.58942 (6)0.0221 (3)
C80.3575 (2)0.69523 (11)0.59583 (6)0.0206 (3)
H8A0.30340.71690.63250.025*
C90.2332 (3)0.75380 (13)0.55000 (7)0.0273 (4)
H9A0.28100.73180.51320.033*
H9B0.07380.74050.55160.033*
C100.2742 (3)0.86397 (13)0.55644 (8)0.0286 (4)
H10A0.19640.90010.52560.034*
H10B0.21670.88730.59200.034*
C110.6425 (3)0.82942 (11)0.60045 (7)0.0237 (3)
H11A0.59790.85240.63740.028*
H11B0.80120.84320.59770.028*
C120.6024 (3)0.71882 (11)0.59519 (7)0.0230 (3)
H12A0.68120.68420.62640.028*
H12B0.66120.69470.56000.028*
O1B0.48994 (19)0.91121 (8)0.44016 (5)0.0257 (3)
O21B0.7803 (2)0.77495 (10)0.47615 (5)0.0327 (3)
O22B1.01401 (18)0.74502 (9)0.41357 (5)0.0262 (3)
O41B0.7531 (3)0.69201 (10)0.22667 (5)0.0441 (4)
O42B0.4368 (3)0.74855 (11)0.19724 (5)0.0426 (4)
O61B−0.0029 (2)0.93104 (14)0.31606 (7)0.0563 (5)
O62B0.1039 (2)0.97294 (11)0.39934 (8)0.0495 (4)
N2B0.8313 (2)0.77022 (10)0.42725 (5)0.0207 (3)
N4B0.5790 (3)0.73383 (11)0.23427 (6)0.0322 (4)
N6B0.1329 (2)0.93020 (11)0.35541 (7)0.0327 (4)
C1B0.4929 (2)0.86302 (11)0.39577 (6)0.0197 (3)
C2B0.6651 (2)0.79351 (11)0.38377 (6)0.0191 (3)
C3B0.6944 (3)0.75188 (11)0.33251 (6)0.0219 (3)
H3BA0.81740.71070.32660.026*
C4B0.5401 (3)0.77135 (12)0.28969 (6)0.0249 (3)
C5B0.3567 (3)0.82860 (12)0.29821 (7)0.0268 (4)
H5BA0.24810.83770.26900.032*
C6B0.3327 (3)0.87222 (11)0.34922 (7)0.0241 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F1A0.0361 (8)0.0377 (8)0.0237 (7)−0.0054 (6)−0.0035 (5)−0.0009 (6)
F1B0.0361 (8)0.0377 (8)0.0237 (7)−0.0054 (6)−0.0035 (5)−0.0009 (6)
F20.0645 (8)0.0379 (6)0.0566 (8)−0.0099 (6)0.0386 (6)0.0049 (5)
O10.0580 (8)0.0199 (6)0.0410 (7)−0.0143 (6)0.0276 (6)−0.0133 (5)
N10.0441 (8)0.0187 (7)0.0313 (7)−0.0118 (6)0.0156 (6)−0.0087 (6)
N20.0251 (6)0.0157 (6)0.0189 (6)0.0022 (5)0.0021 (5)0.0010 (5)
C10.0263 (8)0.0147 (7)0.0235 (8)0.0008 (6)0.0064 (6)−0.0009 (6)
C20.0305 (8)0.0187 (7)0.0259 (8)0.0016 (6)0.0055 (6)−0.0020 (6)
C30.0466 (10)0.0196 (8)0.0243 (8)0.0054 (7)0.0104 (7)0.0013 (6)
C40.0428 (10)0.0196 (8)0.0390 (10)0.0010 (7)0.0229 (8)0.0028 (7)
C50.0254 (8)0.0229 (8)0.0488 (11)−0.0027 (7)0.0106 (7)−0.0037 (7)
C60.0282 (8)0.0209 (8)0.0293 (8)0.0014 (6)0.0040 (7)−0.0026 (6)
C70.0259 (7)0.0205 (8)0.0203 (7)−0.0040 (6)0.0032 (6)−0.0024 (6)
C80.0265 (8)0.0183 (7)0.0175 (7)−0.0021 (6)0.0050 (6)−0.0023 (6)
C90.0177 (7)0.0291 (9)0.0347 (9)0.0012 (6)−0.0053 (6)−0.0001 (7)
C100.0221 (8)0.0257 (8)0.0378 (9)0.0083 (6)0.0004 (7)0.0045 (7)
C110.0259 (8)0.0185 (7)0.0259 (8)−0.0014 (6)−0.0080 (6)0.0022 (6)
C120.0238 (8)0.0164 (7)0.0277 (8)−0.0002 (6)−0.0077 (6)0.0025 (6)
O1B0.0371 (6)0.0189 (5)0.0212 (5)0.0061 (5)0.0042 (5)0.0021 (4)
O21B0.0333 (6)0.0485 (8)0.0163 (5)0.0145 (6)0.0005 (5)−0.0001 (5)
O22B0.0217 (5)0.0304 (6)0.0266 (6)0.0043 (5)0.0024 (4)−0.0007 (5)
O41B0.0744 (10)0.0356 (7)0.0227 (6)0.0128 (7)0.0063 (6)−0.0007 (5)
O42B0.0634 (9)0.0424 (8)0.0206 (6)−0.0175 (7)−0.0141 (6)0.0038 (5)
O61B0.0276 (7)0.0832 (12)0.0574 (9)0.0107 (7)−0.0072 (6)0.0273 (9)
O62B0.0328 (7)0.0341 (8)0.0810 (11)0.0108 (6)−0.0029 (7)−0.0201 (8)
N2B0.0226 (6)0.0205 (6)0.0189 (6)0.0015 (5)0.0000 (5)−0.0005 (5)
N4B0.0563 (10)0.0218 (7)0.0179 (7)−0.0109 (7)−0.0037 (6)0.0033 (5)
N6B0.0222 (7)0.0233 (7)0.0525 (10)−0.0023 (6)−0.0006 (6)0.0156 (7)
C1B0.0239 (7)0.0154 (7)0.0202 (7)−0.0029 (6)0.0028 (6)0.0041 (5)
C2B0.0213 (7)0.0175 (7)0.0183 (7)−0.0028 (6)−0.0002 (5)0.0029 (6)
C3B0.0289 (8)0.0169 (7)0.0199 (7)−0.0026 (6)0.0015 (6)0.0008 (6)
C4B0.0373 (9)0.0192 (7)0.0180 (7)−0.0076 (7)−0.0019 (6)0.0020 (6)
C5B0.0300 (8)0.0243 (8)0.0253 (8)−0.0098 (6)−0.0086 (6)0.0092 (6)
C6B0.0216 (7)0.0188 (7)0.0318 (8)−0.0019 (6)−0.0007 (6)0.0081 (6)

Geometric parameters (Å, °)

F2—C41.3563 (19)C10—H10A0.9900
O1—N11.4126 (18)C10—H10B0.9900
O1—H1A0.8400C11—C121.521 (2)
N1—C71.270 (2)C11—H11A0.9900
N2—C111.4926 (19)C11—H11B0.9900
N2—C101.495 (2)C12—H12A0.9900
N2—H2A0.9200C12—H12B0.9900
N2—H2B0.9200O1B—C1B1.2517 (19)
C1—C61.391 (2)O21B—N2B1.2317 (17)
C1—C21.393 (2)O22B—N2B1.2240 (17)
C1—C71.486 (2)O41B—N4B1.224 (2)
C2—C31.375 (2)O42B—N4B1.229 (2)
C2—H20.9500O61B—N6B1.227 (2)
C3—C41.373 (3)O62B—N6B1.224 (2)
C3—H3A0.9500N2B—C2B1.4556 (19)
C4—C51.377 (3)N4B—C4B1.456 (2)
C5—C61.388 (2)N6B—C6B1.462 (2)
C5—H5A0.9500C1B—C2B1.448 (2)
C6—H60.9500C1B—C6B1.456 (2)
C7—C81.520 (2)C2B—C3B1.374 (2)
C8—C121.526 (2)C3B—C4B1.387 (2)
C8—C91.529 (2)C3B—H3BA0.9500
C8—H8A1.0000C4B—C5B1.383 (3)
C9—C101.519 (2)C5B—C6B1.375 (2)
C9—H9A0.9900C5B—H5BA0.9500
C9—H9B0.9900
N1—O1—H1A109.5C9—C10—H10A109.7
C7—N1—O1113.86 (13)N2—C10—H10B109.7
C11—N2—C10112.24 (12)C9—C10—H10B109.7
C11—N2—H2A109.2H10A—C10—H10B108.2
C10—N2—H2A109.2N2—C11—C12110.71 (12)
C11—N2—H2B109.2N2—C11—H11A109.5
C10—N2—H2B109.2C12—C11—H11A109.5
H2A—N2—H2B107.9N2—C11—H11B109.5
C6—C1—C2117.46 (14)C12—C11—H11B109.5
C6—C1—C7122.72 (14)H11A—C11—H11B108.1
C2—C1—C7119.78 (14)C11—C12—C8111.00 (13)
C3—C2—C1122.77 (16)C11—C12—H12A109.4
C3—C2—H2118.6C8—C12—H12A109.4
C1—C2—H2118.6C11—C12—H12B109.4
C4—C3—C2117.09 (16)C8—C12—H12B109.4
C4—C3—H3A121.5H12A—C12—H12B108.0
C2—C3—H3A121.5O22B—N2B—O21B122.94 (13)
F2—C4—C3117.88 (17)O22B—N2B—C2B118.59 (12)
F2—C4—C5118.62 (17)O21B—N2B—C2B118.45 (13)
C3—C4—C5123.49 (16)O41B—N4B—O42B123.60 (15)
C4—C5—C6117.61 (16)O41B—N4B—C4B118.50 (14)
C4—C5—H5A121.2O42B—N4B—C4B117.86 (17)
C6—C5—H5A121.2O62B—N6B—O61B122.80 (16)
C5—C6—C1121.57 (16)O62B—N6B—C6B119.71 (15)
C5—C6—H6119.2O61B—N6B—C6B117.45 (17)
C1—C6—H6119.2O1B—C1B—C2B123.23 (14)
N1—C7—C1125.05 (14)O1B—C1B—C6B125.10 (14)
N1—C7—C8116.31 (14)C2B—C1B—C6B111.61 (13)
C1—C7—C8118.63 (13)C3B—C2B—C1B124.81 (14)
C7—C8—C12112.30 (13)C3B—C2B—N2B116.10 (14)
C7—C8—C9110.57 (13)C1B—C2B—N2B118.93 (13)
C12—C8—C9109.62 (12)C2B—C3B—C4B118.41 (15)
C7—C8—H8A108.1C2B—C3B—H3BA120.8
C12—C8—H8A108.1C4B—C3B—H3BA120.8
C9—C8—H8A108.1C5B—C4B—C3B121.40 (15)
C10—C9—C8111.22 (13)C5B—C4B—N4B119.87 (15)
C10—C9—H9A109.4C3B—C4B—N4B118.67 (16)
C8—C9—H9A109.4C6B—C5B—C4B119.53 (15)
C10—C9—H9B109.4C6B—C5B—H5BA120.2
C8—C9—H9B109.4C4B—C5B—H5BA120.2
H9A—C9—H9B108.0C5B—C6B—C1B123.61 (15)
N2—C10—C9109.65 (13)C5B—C6B—N6B116.43 (15)
N2—C10—H10A109.7C1B—C6B—N6B119.96 (15)
C6—C1—C2—C30.0 (2)O1B—C1B—C2B—C3B−168.56 (15)
C7—C1—C2—C3177.62 (15)C6B—C1B—C2B—C3B9.0 (2)
C1—C2—C3—C4−1.2 (2)O1B—C1B—C2B—N2B6.6 (2)
C2—C3—C4—F2−179.33 (15)C6B—C1B—C2B—N2B−175.87 (12)
C2—C3—C4—C51.4 (3)O22B—N2B—C2B—C3B23.4 (2)
F2—C4—C5—C6−179.72 (15)O21B—N2B—C2B—C3B−155.21 (14)
C3—C4—C5—C6−0.5 (3)O22B—N2B—C2B—C1B−152.14 (14)
C4—C5—C6—C1−0.8 (2)O21B—N2B—C2B—C1B29.2 (2)
C2—C1—C6—C51.0 (2)C1B—C2B—C3B—C4B−5.0 (2)
C7—C1—C6—C5−176.53 (15)N2B—C2B—C3B—C4B179.71 (13)
O1—N1—C7—C1−2.5 (3)C2B—C3B—C4B—C5B−2.0 (2)
O1—N1—C7—C8178.61 (14)C2B—C3B—C4B—N4B175.31 (14)
C6—C1—C7—N1−60.4 (2)O41B—N4B—C4B—C5B172.66 (15)
C2—C1—C7—N1122.18 (19)O42B—N4B—C4B—C5B−5.3 (2)
C6—C1—C7—C8118.49 (17)O41B—N4B—C4B—C3B−4.7 (2)
C2—C1—C7—C8−59.0 (2)O42B—N4B—C4B—C3B177.34 (15)
N1—C7—C8—C12−50.3 (2)C3B—C4B—C5B—C6B4.0 (2)
C1—C7—C8—C12130.70 (15)N4B—C4B—C5B—C6B−173.31 (14)
N1—C7—C8—C972.44 (19)C4B—C5B—C6B—C1B0.9 (2)
C1—C7—C8—C9−106.51 (16)C4B—C5B—C6B—N6B−178.96 (14)
C7—C8—C9—C10178.97 (13)O1B—C1B—C6B—C5B170.67 (15)
C12—C8—C9—C10−56.69 (17)C2B—C1B—C6B—C5B−6.8 (2)
C11—N2—C10—C9−57.77 (17)O1B—C1B—C6B—N6B−9.5 (2)
C8—C9—C10—N257.41 (18)C2B—C1B—C6B—N6B173.04 (13)
C10—N2—C11—C1257.29 (17)O62B—N6B—C6B—C5B−178.23 (15)
N2—C11—C12—C8−55.84 (17)O61B—N6B—C6B—C5B3.9 (2)
C7—C8—C12—C11178.80 (13)O62B—N6B—C6B—C1B1.9 (2)
C9—C8—C12—C1155.48 (17)O61B—N6B—C6B—C1B−175.92 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.842.092.7980 (18)141
N2—H2A···O1B0.922.082.8005 (16)134
N2—H2A···O21B0.922.142.9580 (17)148
N2—H2B···O1Bii0.921.872.7705 (17)164
N2—H2B···O62Bii0.922.563.170 (2)125

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2003).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Hu, H.-Y., Huang, Y.-C., Yu, H.-T. & Zhang, Y. (2008). Acta Cryst. E64, o2120. [PMC free article] [PubMed]
  • Jottier, W. I., De Winter, H. L., Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1992). Acta Cryst. C48, 1827–1830.
  • Naveen, S., Basappa, Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2007). Acta Cryst. E63, o642–o643.
  • Oxford Diffraction (2009). CrysAlis Pro and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Ravikumar, K. & Sridhar, B. (2006). Acta Cryst. E62, o3730–o3731.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Umbricht, D. & Kane, J. M. (1995). Schizophr. Bull.21, 593–606. [PubMed]
  • Yathirajan, H. S., Narasimhamurthy, T., Nagaraj, B., Nagaraja, P., Narasegowda, R. S. & Rathore, R. S. (2005). Acta Cryst. E61, o356–o358.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography