PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2421.
Published online 2009 September 9. doi:  10.1107/S160053680903493X
PMCID: PMC2970329

4-Bromo-3-methyl­anilinium hydrogen sulfate

Abstract

In the cation of the title compound, C7H9BrN+·HSO4 , the amino N atom is protonated. In the crystal, inter­molecular O—H(...)O and N—H(...)O hydrogen bonds generate an infinite two-dimensional network parallel to (001).

Related literature

For the structures of amino derivatives, see: Fu et al. (2007 [triangle], 2008 [triangle]); Fu & Xiong (2008 [triangle]). Amino derivatives are used in the construction of metal-organic frameworks. For applications of metal-organic coordination compounds, see: Chen et al. (2001 [triangle]); Xiong et al. (1999 [triangle]); Xie et al. (2002 [triangle]); Zhao et al. (2004 [triangle]); Wang et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2421-scheme1.jpg

Experimental

Crystal data

  • C7H9BrN+·HSO4
  • M r = 284.13
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2421-efi1.jpg
  • a = 4.9448 (10) Å
  • b = 6.4084 (13) Å
  • c = 16.674 (3) Å
  • α = 98.92 (3)°
  • β = 96.22 (3)°
  • γ = 100.01 (3)°
  • V = 509.04 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.23 mm−1
  • T = 298 K
  • 0.40 × 0.05 × 0.05 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.910, T max = 1.000
  • 5279 measured reflections
  • 2323 independent reflections
  • 1804 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.115
  • S = 1.07
  • 2323 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680903493X/pv2203sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903493X/pv2203Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Wang et al. 2002; Fu et al., 2008; Chen et al., 2001; Xie et al., 2002; Zhao et al.,2004; Xiong et al., 1999). Amino derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks. (Fu et al., 2007; Fu & Xiong 2008). We report here the crystal structure of the title compound, 4-bromo-3-methylanilinium bisulfate.

In the title compound (Fig.1), The amino N atoms are protonated. In the crystal structure, all the amine group H atoms and HSO4- H atoms are involved in N—H···O and O—H···O hydrogen bonds (Table 1) with O atoms of HSO4- anion. These hydrogen bonds link the ionic units into a two-dimensional network (Fig. 2).

Experimental

The commercial 4-bromo-3-methylaniline (3 mmol) and H2SO4 (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement

All H atoms attached to C, O and N atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic), C–H = 0.96 Å (methyl), O–H = 0.82 Å and N–H = 0.89 Å with Uiso(H) =1.2Ueq(C) and Uiso(H) =1.5Ueq(O or N).

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids have been drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis showing hydrogen bonding (dotted line); H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C7H9BrN+·HSO4Z = 2
Mr = 284.13F(000) = 284
Triclinic, P1Dx = 1.854 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9448 (10) ÅCell parameters from 1804 reflections
b = 6.4084 (13) Åθ = 3.3–27.5°
c = 16.674 (3) ŵ = 4.23 mm1
α = 98.92 (3)°T = 298 K
β = 96.22 (3)°Block, colorless
γ = 100.01 (3)°0.40 × 0.05 × 0.05 mm
V = 509.04 (17) Å3

Data collection

Rigaku Mercury2 diffractometer2323 independent reflections
Radiation source: fine-focus sealed tube1804 reflections with I > 2σ(I)
graphiteRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = −6→6
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −8→8
Tmin = 0.910, Tmax = 1.000l = −21→21
5279 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0426P)2 + 0.1536P] where P = (Fo2 + 2Fc2)/3
2323 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.74330 (10)0.74731 (8)0.96412 (3)0.0635 (2)
N10.0682 (6)0.3866 (4)0.63055 (17)0.0278 (6)
H1A−0.04520.47410.61820.042*
H1B−0.03080.25610.62990.042*
H1C0.18570.37820.59390.042*
C10.5271 (7)0.6260 (6)0.8613 (2)0.0355 (8)
C40.2233 (7)0.4704 (5)0.7120 (2)0.0273 (7)
C50.4016 (7)0.3520 (5)0.7448 (2)0.0290 (7)
H50.41540.21930.71560.035*
C30.1915 (7)0.6643 (5)0.7535 (2)0.0329 (8)
H30.06960.74180.73090.039*
C60.5593 (7)0.4282 (6)0.8206 (2)0.0309 (8)
C20.3444 (8)0.7420 (6)0.8295 (2)0.0404 (9)
H20.32470.87230.85940.049*
C70.7547 (8)0.2971 (7)0.8549 (3)0.0458 (10)
H7A0.94110.37820.86350.069*
H7B0.74310.16590.81690.069*
H7C0.70430.26380.90610.069*
S10.37322 (15)0.18764 (12)0.42345 (5)0.0231 (2)
O10.6927 (5)0.1969 (4)0.43590 (16)0.0379 (6)
H10.72570.09320.45580.057*
O20.2512 (6)0.0108 (4)0.35840 (16)0.0433 (7)
O30.3537 (5)0.3945 (3)0.40391 (16)0.0328 (6)
O40.2770 (5)0.1540 (4)0.50052 (14)0.0305 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0640 (3)0.0704 (4)0.0396 (3)−0.0081 (2)−0.0124 (2)−0.0034 (2)
N10.0312 (15)0.0272 (15)0.0268 (14)0.0091 (11)0.0038 (11)0.0062 (12)
C10.0342 (19)0.038 (2)0.0290 (18)−0.0039 (15)0.0024 (15)0.0041 (16)
C40.0278 (17)0.0235 (17)0.0296 (18)0.0015 (13)0.0040 (13)0.0058 (14)
C50.0307 (17)0.0267 (17)0.0319 (18)0.0076 (14)0.0071 (14)0.0080 (15)
C30.0350 (19)0.0261 (18)0.038 (2)0.0064 (14)0.0067 (15)0.0066 (16)
C60.0254 (17)0.0352 (19)0.0342 (19)0.0017 (14)0.0067 (14)0.0156 (16)
C20.050 (2)0.0265 (19)0.041 (2)0.0040 (16)0.0063 (18)−0.0014 (17)
C70.044 (2)0.055 (3)0.043 (2)0.0132 (18)−0.0031 (18)0.023 (2)
S10.0207 (4)0.0192 (4)0.0313 (4)0.0042 (3)0.0043 (3)0.0091 (3)
O10.0225 (12)0.0427 (15)0.0590 (17)0.0108 (10)0.0136 (11)0.0304 (13)
O20.0570 (17)0.0272 (13)0.0392 (15)−0.0020 (11)0.0044 (13)−0.0009 (12)
O30.0303 (13)0.0235 (12)0.0486 (15)0.0056 (10)0.0055 (11)0.0181 (11)
O40.0318 (13)0.0285 (13)0.0369 (14)0.0092 (10)0.0122 (10)0.0145 (11)

Geometric parameters (Å, °)

Br1—C11.894 (4)C3—H30.9300
N1—C41.458 (4)C6—C71.509 (5)
N1—H1A0.8900C2—H20.9300
N1—H1B0.8900C7—H7A0.9600
N1—H1C0.8900C7—H7B0.9600
C1—C21.379 (6)C7—H7C0.9600
C1—C61.386 (5)S1—O31.430 (2)
C4—C31.369 (5)S1—O21.437 (3)
C4—C51.382 (5)S1—O41.452 (2)
C5—C61.380 (5)S1—O11.560 (2)
C5—H50.9300O1—H10.8200
C3—C21.376 (5)
C4—N1—H1A109.5C5—C6—C7119.9 (3)
C4—N1—H1B109.5C1—C6—C7123.4 (3)
H1A—N1—H1B109.5C3—C2—C1119.8 (3)
C4—N1—H1C109.5C3—C2—H2120.1
H1A—N1—H1C109.5C1—C2—H2120.1
H1B—N1—H1C109.5C6—C7—H7A109.5
C2—C1—C6122.6 (3)C6—C7—H7B109.5
C2—C1—Br1117.8 (3)H7A—C7—H7B109.5
C6—C1—Br1119.6 (3)C6—C7—H7C109.5
C3—C4—C5121.7 (3)H7A—C7—H7C109.5
C3—C4—N1119.5 (3)H7B—C7—H7C109.5
C5—C4—N1118.8 (3)O3—S1—O2114.06 (16)
C6—C5—C4120.8 (3)O3—S1—O4113.59 (14)
C6—C5—H5119.6O2—S1—O4111.41 (15)
C4—C5—H5119.6O3—S1—O1102.60 (13)
C4—C3—C2118.4 (3)O2—S1—O1107.73 (16)
C4—C3—H3120.8O4—S1—O1106.61 (14)
C2—C3—H3120.8S1—O1—H1109.5
C5—C6—C1116.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.891.902.767 (3)166
N1—H1B···O2ii0.891.912.797 (4)173
O1—H1···O4iii0.821.842.650 (3)168
N1—H1C···O40.892.092.829 (4)140

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2203).

References

  • Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun.4, 346–349.
  • Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc.129, 5346–5347. [PubMed]
  • Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948. [PubMed]
  • Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des.8, 3461–3464.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem.18, 1191–1194.
  • Xie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem.41, 3323–3326. [PubMed]
  • Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem.23, 1051–1052.
  • Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem.630, 1367–1370.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography