PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1158–m1159.
Published online 2009 September 5. doi:  10.1107/S1600536809034278
PMCID: PMC2970327

Aqua­{6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II)

Abstract

The title complex, [Ni(C18H18N2O4)(H2O)], lies on a mirror plane with the NiII ion coordinated by two N and two O atoms of a tetra­dentate Schiff base ligand and one water O atom in a distorted square-pyramidal enviroment. The –CH2–CH2– group of the ligand is disordered equally over two sites about the mirror plane. The dihedral angle between the mean planes of the two symmetry-related chelate rings is 37.16 (6)°. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link complex mol­ecules into one-dimensional chains along [100] and these chains are linked, in turn, by very weak inter­molecular C—H(...)O hydrogen bonds into a two-dimensional network.

Related literature

For background to Schiff base complexes, see: Akine et al. (2005 [triangle]); Gamovski et al. (1993 [triangle]); Garg & Kumar (2003 [triangle]); Tarafder et al. (2002 [triangle]); Yang et al. (2000 [triangle]). For a related crystal structure, see: Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1158-scheme1.jpg

Experimental

Crystal data

  • [Ni(C18H18N2O4)(H2O)]
  • M r = 403.07
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1158-efi2.jpg
  • a = 9.2712 (11) Å
  • b = 24.763 (3) Å
  • c = 7.5185 (10) Å
  • V = 1726.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.16 mm−1
  • T = 298 K
  • 0.48 × 0.42 × 0.26 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.607, T max = 0.753
  • 7520 measured reflections
  • 1550 independent reflections
  • 1368 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.078
  • S = 1.19
  • 1550 reflections
  • 131 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034278/lh2877sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034278/lh2877Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

supplementary crystallographic information

Comment

Schiff base complexes play an important role in the stereochemical models of transition metal coordination chemistry with their easy preparation, diversition and structural variation (Gamovski et al.,1993). They also have been intensively investigated owing to their strong coordination capability and diverse biological activities, such as antibacterial and antitumor activities (Yang et al., 2000; Tarafder et al., 2002). Therefore, synthesis of new shiff base Nickel(II) complexes is still the aim of many recent investigations (Garg & Kumar, 2003; Akine et al., 2005). As part of a series of crystal structure studies (Wang et al., 2007), we report here the synthesis and crystal structure of the title compound.

In the molecular structure (Fig. 1), The NiII ion is five coordinated by two N and two O atoms of a new tetradentate Schiff base ligand and one O atom of water molecule in a distorted square-pyramidal configuration. Two nitrogen atoms and two oxygen atoms of Schiff base occupy the basal plane, and the O atom of the coordinated water molecule is in the apical position. The dihedral angle between the planes of the two symmetry realted Ni/N/C/C/C/O chelate rings is 37.16 (6)°. The molecule lies on a mirror plane and the -CH2-CH2- group of the ligand is disordered equally over two sites about the mirror plane.

In the crystal structure, intermolecular O—H···O hydrogen bonds link complex molecules into one-dimensional chains along [100] and these chains are linked, in turn, by very weak intermolecular C—H···O hydrogen bonds into a two-dimensional network (Fig. 2).

Experimental

1,2-ethylenediamine (1 mmol, 60.10 mg) was dissolved in hot methanol (10 ml) and added dropwise to a methanol solution (3 ml) of 3-methoxysalicylaldehyde (1 mmol, 152.14 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of nickel chloride (1 mmol, 237.69 mg) was added dropwise and stirred for another 5 h. The solution was left at room temperature for 15 days, whereupon green block crystals suitable for X-ray diffraction were obtained.

Refinement

All H atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å, O—H = 0.85 Å) and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C), 1.5Ueq(methyl C) or 1.2Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The disorder is not shown [symmetry code: (i) x, -y+3/2, z].
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.

Crystal data

[Ni(C18H18N2O4)(H2O)]F(000) = 840
Mr = 403.07Dx = 1.551 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3742 reflections
a = 9.2712 (11) Åθ = 2.5–27.9°
b = 24.763 (3) ŵ = 1.16 mm1
c = 7.5185 (10) ÅT = 298 K
V = 1726.1 (4) Å3Block, green
Z = 40.48 × 0.42 × 0.26 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer1550 independent reflections
Radiation source: fine-focus sealed tube1368 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.607, Tmax = 0.753k = −29→27
7520 measured reflectionsl = −5→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.19w = 1/[σ2(Fo2) + (0.0321P)2 + 0.8008P] where P = (Fo2 + 2Fc2)/3
1550 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.42518 (4)0.75000.52345 (5)0.03327 (16)
N10.5687 (2)0.69791 (9)0.4405 (3)0.0577 (6)
O10.28010 (18)0.69435 (6)0.5505 (2)0.0442 (4)
O20.04869 (19)0.63591 (7)0.5874 (3)0.0602 (5)
O30.5119 (2)0.75000.8191 (3)0.0477 (6)
H30.55680.72240.85690.057*
C10.5493 (3)0.64757 (11)0.4103 (4)0.0545 (7)
H10.62730.62820.36570.065*
C20.4180 (3)0.61846 (10)0.4391 (3)0.0451 (6)
C30.2919 (3)0.64343 (9)0.5057 (3)0.0402 (6)
C40.1686 (3)0.60950 (10)0.5265 (3)0.0460 (6)
C50.1735 (3)0.55512 (11)0.4884 (4)0.0587 (8)
H50.09190.53390.50550.070*
C60.2999 (4)0.53165 (11)0.4244 (4)0.0675 (9)
H60.30250.49500.39840.081*
C70.4188 (3)0.56250 (11)0.4003 (4)0.0592 (7)
H70.50280.54660.35740.071*
C8−0.0821 (3)0.60639 (13)0.5993 (4)0.0647 (8)
H8A−0.10420.59080.48550.097*
H8B−0.15870.63020.63440.097*
H8C−0.07190.57820.68590.097*
C90.7178 (7)0.7189 (3)0.4502 (9)0.0473 (14)0.50
H9A0.78670.69570.39010.057*0.50
H9B0.74790.72460.57230.057*0.50
C100.6943 (7)0.7720 (3)0.3518 (9)0.0544 (17)0.50
H10A0.78100.79390.35740.065*0.50
H10B0.67260.76500.22780.065*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0290 (2)0.0330 (2)0.0378 (3)0.0000.00299 (18)0.000
N10.0405 (12)0.0549 (14)0.0778 (16)−0.0030 (10)0.0128 (12)−0.0225 (12)
O10.0373 (9)0.0355 (9)0.0597 (11)−0.0010 (7)0.0046 (8)−0.0087 (8)
O20.0454 (11)0.0488 (11)0.0864 (14)−0.0098 (9)0.0128 (10)−0.0104 (10)
O30.0477 (14)0.0425 (13)0.0530 (15)0.000−0.0102 (12)0.000
C10.0427 (15)0.0547 (17)0.0660 (18)0.0056 (13)0.0070 (13)−0.0214 (14)
C20.0498 (15)0.0426 (14)0.0428 (14)0.0031 (12)0.0001 (12)−0.0074 (11)
C30.0437 (14)0.0385 (13)0.0386 (13)0.0008 (11)−0.0034 (11)−0.0022 (10)
C40.0468 (15)0.0422 (14)0.0492 (15)−0.0034 (11)0.0006 (12)−0.0051 (11)
C50.0609 (18)0.0424 (15)0.073 (2)−0.0111 (13)0.0024 (15)−0.0039 (13)
C60.081 (2)0.0335 (14)0.088 (2)0.0001 (15)0.0074 (19)−0.0114 (14)
C70.0620 (18)0.0454 (15)0.0703 (19)0.0081 (14)0.0064 (15)−0.0127 (14)
C80.0517 (17)0.075 (2)0.0676 (19)−0.0234 (15)0.0137 (15)−0.0146 (16)
C90.035 (3)0.051 (3)0.056 (4)0.005 (2)0.000 (3)−0.012 (3)
C100.036 (3)0.062 (4)0.065 (4)−0.001 (3)0.011 (3)0.010 (3)

Geometric parameters (Å, °)

Ni1—O11.9364 (16)C5—C61.393 (4)
Ni1—O1i1.9364 (16)C5—H50.9300
Ni1—N1i1.956 (2)C6—C71.353 (4)
Ni1—N11.956 (2)C6—H60.9300
Ni1—O32.363 (2)C7—H70.9300
N1—C11.280 (3)C8—H8A0.9600
N1—C91.479 (7)C8—H8B0.9600
N1—C10i1.535 (7)C8—H8C0.9600
O1—C31.310 (3)C9—C10i0.803 (7)
O2—C41.369 (3)C9—C101.525 (7)
O2—C81.419 (3)C9—C9i1.541 (13)
O3—H30.8501C9—H9A0.9700
C1—C21.431 (4)C9—H9B0.9700
C1—H10.9300C10—C9i0.803 (7)
C2—C31.414 (3)C10—C10i1.092 (13)
C2—C71.416 (4)C10—N1i1.535 (7)
C3—C41.428 (3)C10—H10A0.9700
C4—C51.377 (4)C10—H10B0.9700
O1—Ni1—O1i90.74 (10)C6—C7—H7119.3
O1—Ni1—N1i167.34 (9)C2—C7—H7119.3
O1i—Ni1—N1i92.11 (8)O2—C8—H8A109.5
O1—Ni1—N192.11 (8)O2—C8—H8B109.5
O1i—Ni1—N1167.34 (9)H8A—C8—H8B109.5
N1i—Ni1—N182.55 (14)O2—C8—H8C109.5
O1—Ni1—O397.90 (7)H8A—C8—H8C109.5
O1i—Ni1—O397.90 (7)H8B—C8—H8C109.5
N1i—Ni1—O393.93 (9)C10i—C9—N178.4 (8)
N1—Ni1—O393.93 (9)C10i—C9—C1043.4 (8)
C1—N1—C9118.9 (3)N1—C9—C1098.4 (5)
C1—N1—C10i120.1 (3)C10i—C9—C9i73.8 (8)
C9—N1—C10i30.8 (3)N1—C9—C9i110.6 (3)
C1—N1—Ni1127.10 (19)C10—C9—C9i30.4 (3)
C9—N1—Ni1112.9 (3)C10i—C9—H9A85.1
C10i—N1—Ni1109.6 (3)N1—C9—H9A112.6
C3—O1—Ni1126.86 (15)C10—C9—H9A112.2
C4—O2—C8118.0 (2)C9i—C9—H9A126.2
Ni1—O3—H3118.8C10i—C9—H9B155.4
N1—C1—C2125.7 (2)N1—C9—H9B111.5
N1—C1—H1117.2C10—C9—H9B112.0
C2—C1—H1117.2C9i—C9—H9B81.6
C3—C2—C7120.3 (2)H9A—C9—H9B109.8
C3—C2—C1122.4 (2)C9i—C10—C10i106.2 (8)
C7—C2—C1117.2 (2)C9i—C10—C975.9 (9)
O1—C3—C2125.5 (2)C10i—C10—C930.4 (3)
O1—C3—C4118.1 (2)C9i—C10—N1i70.7 (8)
C2—C3—C4116.3 (2)C10i—C10—N1i119.0 (3)
O2—C4—C5124.3 (2)C9—C10—N1i108.4 (5)
O2—C4—C3113.9 (2)C9i—C10—H10A65.1
C5—C4—C3121.7 (3)C10i—C10—H10A124.0
C4—C5—C6120.5 (3)C9—C10—H10A110.1
C4—C5—H5119.8N1i—C10—H10A109.8
C6—C5—H5119.8C9i—C10—H10B172.9
C7—C6—C5119.7 (3)C10i—C10—H10B79.6
C7—C6—H6120.1C9—C10—H10B109.9
C5—C6—H6120.1N1i—C10—H10B110.4
C6—C7—C2121.4 (3)H10A—C10—H10B108.4
O1—Ni1—N1—C14.5 (3)C8—O2—C4—C5−5.1 (4)
O1i—Ni1—N1—C1−98.3 (4)C8—O2—C4—C3175.3 (2)
N1i—Ni1—N1—C1−163.9 (2)O1—C3—C4—O22.0 (3)
O3—Ni1—N1—C1102.6 (3)C2—C3—C4—O2−178.5 (2)
O1—Ni1—N1—C9−162.9 (3)O1—C3—C4—C5−177.7 (2)
O1i—Ni1—N1—C994.2 (5)C2—C3—C4—C51.8 (4)
N1i—Ni1—N1—C928.6 (4)O2—C4—C5—C6179.1 (3)
O3—Ni1—N1—C9−64.8 (3)C3—C4—C5—C6−1.3 (4)
O1—Ni1—N1—C10i164.1 (3)C4—C5—C6—C70.3 (5)
O1i—Ni1—N1—C10i61.3 (5)C5—C6—C7—C20.1 (5)
N1i—Ni1—N1—C10i−4.3 (3)C3—C2—C7—C60.5 (5)
O3—Ni1—N1—C10i−97.8 (3)C1—C2—C7—C6179.6 (3)
O1i—Ni1—O1—C3162.41 (15)C1—N1—C9—C10i101.3 (8)
N1i—Ni1—O1—C359.4 (4)Ni1—N1—C9—C10i−90.2 (8)
N1—Ni1—O1—C3−5.2 (2)C1—N1—C9—C10140.0 (4)
O3—Ni1—O1—C3−99.51 (19)C10i—N1—C9—C1038.8 (7)
C9—N1—C1—C2163.8 (4)Ni1—N1—C9—C10−51.4 (4)
C10i—N1—C1—C2−160.6 (4)C1—N1—C9—C9i168.8 (2)
Ni1—N1—C1—C2−2.9 (5)C10i—N1—C9—C9i67.6 (8)
N1—C1—C2—C30.2 (5)Ni1—N1—C9—C9i−22.6 (3)
N1—C1—C2—C7−178.9 (3)C10i—C9—C10—C9i180.000 (4)
Ni1—O1—C3—C24.5 (3)N1—C9—C10—C9i116.8 (6)
Ni1—O1—C3—C4−176.08 (17)N1—C9—C10—C10i−63.2 (6)
C7—C2—C3—O1178.0 (3)C9i—C9—C10—C10i180.000 (10)
C1—C2—C3—O1−1.0 (4)C10i—C9—C10—N1i116.3 (6)
C7—C2—C3—C4−1.4 (4)N1—C9—C10—N1i53.1 (4)
C1—C2—C3—C4179.5 (2)C9i—C9—C10—N1i−63.7 (6)

Symmetry codes: (i) x, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O1ii0.852.293.007 (3)142
O3—H3···O2ii0.852.182.9313 (19)147
C10—H10B···O1iii0.972.533.236 (7)130
C9—H9B···O3ii0.972.663.322 (7)126

Symmetry codes: (ii) x+1/2, y, −z+3/2; (iii) x+1/2, −y+3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2877).

References

  • Akine, S., Taniguchi, T., Dong, W. K., Masubuchi, S. & Nabeshima, T. (2005). J. Org. Chem.70, 1704–1711. [PubMed]
  • Gamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Garg, B. S. & Kumar, D. N. (2003). Spectrochim. Acta Part A, 59, 229–232. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.
  • Wang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059–m1060.
  • Yang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599–2604.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography