PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2443.
Published online 2009 September 12. doi:  10.1107/S1600536809032954
PMCID: PMC2970322

15-Hydroxy­ethyl-19-isopropyl-5,9-dimethyl-14,16-dioxo-15-aza­penta­cyclo­[10.5.2.01,10.04,9.013,17]nona­dec-18-ene-5-carboxylic acid

Abstract

The title compound, C26H37NO5, which was synthesized from monoethano­lamine and maleopimaric acid, consists of two fused and unbridged cyclo­hexane rings. They form a trans ring junction with a chair conformation. The two methyl groups are in axial positions. In the crystal, inter­molecular O—H(...)O hydrogen bonds link adjacent mol­ecules into a layer structure. Two C—H(...)O interactions are also present.

Related literature

For the synthesis of maleopimaric acid derivatives, see: Walter & Ray (1967 [triangle]). For the use of the title compound in varnishes and surface coatings, see: Penczek (1970 [triangle]); Xiao (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2443-scheme1.jpg

Experimental

Crystal data

  • C26H37NO5
  • M r = 443.57
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2443-efi1.jpg
  • a = 12.274 (3) Å
  • b = 6.9550 (14) Å
  • c = 14.445 (3) Å
  • β = 102.22 (3)°
  • V = 1205.2 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.975, T max = 0.992
  • 2487 measured reflections
  • 2373 independent reflections
  • 1744 reflections with I > 2σ(I)
  • R int = 0.024
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074
  • wR(F 2) = 0.189
  • S = 1.00
  • 2373 reflections
  • 271 parameters
  • 22 restraints
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032954/ng2627sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032954/ng2627Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the 948 program of the State Forestry Administration (grant No. 2006–4-C03).

supplementary crystallographic information

Comment

Maleopimaric acid is a readily obtainable compound, which is made by the reaction of maleic anhydride and rosin. A number of new derivatives of maleopimaric acid have been prepared (Walter, 1967). The title compound is one of modified products of maleopimaric acid, which could be used in varnishes and surface coatings (Xiao, 2003). Although, it has been prepared by Penczek P. (Penczek, 1970), the crystal structure of it has not yet been reported. In this work, we describe the crystal structure of the title compound. The molecular structure is shown in Fig. 1 and the crystal packing in Fig.2.

Experimental

Maleopimaric acid (80.0 g) and monoethanolamine (35.8 g) were slowly heated to 130 degrees centigrade and the reaction was carried out for 2 h. Subsequently, the resulting acrylic modified rosin was cooled to room temperature. Then acetone (150 ml) was added dropwise successively with constant stirring. After dropping the mixture was stirred for another 15 minutes and then filtered. The title compound was precipitated from the solution. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. The crystal data were collected on an Enraf–Nonius CAD-4 difractometer. Data collection and cell refinement were performed using Enraf–Nonius CAD-4 Software.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.98 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.
A view of the molecular structure of the title compound, showing displacement ellipsoids at the 15% probability level.
Fig. 2.
A view of the packing of the title compound.

Crystal data

C26H37NO5F(000) = 480
Mr = 443.57Dx = 1.222 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 12.274 (3) Åθ = 9–12°
b = 6.9550 (14) ŵ = 0.08 mm1
c = 14.445 (3) ÅT = 293 K
β = 102.22 (3)°Block, colorless
V = 1205.2 (4) Å30.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer1744 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
graphiteθmax = 25.2°, θmin = 1.4°
ω/2θ scansh = 0→14
Absorption correction: ψ scan (North et al., 1968)k = 0→8
Tmin = 0.975, Tmax = 0.992l = −17→16
2487 measured reflections3 standard reflections every 200 reflections
2373 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.09P)2 + P] where P = (Fo2 + 2Fc2)/3
2373 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.44 e Å3
22 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N0.7569 (3)0.2774 (8)0.9683 (3)0.0527 (12)
C10.4892 (4)0.2559 (8)0.8217 (3)0.0363 (11)
O10.0325 (6)−0.1069 (12)0.7369 (5)0.123 (2)
C20.4169 (4)0.1064 (8)0.8588 (3)0.0423 (12)
H2A0.39180.16020.91260.051*
H2B0.4622−0.00550.88070.051*
O20.0550 (5)0.1493 (10)0.8226 (4)0.108
H2C0.00390.09290.84390.162*
O30.6287 (3)0.0996 (9)1.0198 (3)0.0839 (18)
C30.3148 (4)0.0426 (9)0.7842 (4)0.0532 (14)
H3A0.3390−0.02420.73310.064*
H3B0.2700−0.04530.81260.064*
C40.2447 (4)0.2185 (7)0.7446 (4)0.0459 (13)
H4A0.23420.29100.80030.055*
O40.8467 (4)0.5151 (11)0.8999 (4)0.110 (2)
C50.1243 (5)0.1684 (10)0.6886 (5)0.0681 (17)
O50.8772 (5)−0.0458 (10)0.9037 (4)0.105
H5A0.8826−0.15840.88220.126*
C60.0641 (5)0.3588 (11)0.6566 (6)0.077 (2)
H6A−0.00870.33020.61760.093*
H6B0.05250.42780.71210.093*
C70.1256 (6)0.4859 (10)0.6020 (5)0.074 (2)
H7A0.08420.60430.58560.089*
H7B0.13220.42240.54370.089*
C80.2398 (5)0.5316 (9)0.6592 (4)0.0623 (17)
H8A0.23180.60510.71450.075*
H8B0.27800.61230.62150.075*
C90.3132 (5)0.3529 (8)0.6926 (3)0.0448 (13)
C100.4166 (4)0.4214 (7)0.7671 (3)0.0381 (11)
H10A0.38710.49270.81500.046*
C110.4956 (5)0.5621 (8)0.7305 (4)0.0577 (15)
H11A0.47490.56890.66200.069*
H11B0.48770.68970.75540.069*
C120.6177 (5)0.4975 (9)0.7605 (4)0.0587 (16)
H12A0.66690.58340.73440.070*
C130.6456 (5)0.5035 (10)0.8703 (4)0.0613 (16)
H13A0.63250.63310.89240.074*
C140.5700 (4)0.3595 (8)0.9058 (3)0.0413 (12)
H14A0.52490.42920.94320.050*
C150.5630 (4)0.1723 (7)0.7609 (3)0.0374 (11)
H15A0.56160.04240.74550.045*
C160.6300 (5)0.2951 (10)0.7306 (4)0.0539 (15)
C170.7128 (7)0.2472 (14)0.6679 (5)0.083 (2)
H17A0.78660.28920.70190.099*
C180.6885 (7)0.3491 (16)0.5733 (6)0.098
H18A0.68110.48450.58310.148*
H18B0.62050.30020.53520.148*
H18C0.74870.32710.54150.148*
C190.7198 (7)0.0228 (16)0.6504 (6)0.103 (3)
H19A0.7720−0.00130.61070.155*
H19B0.6477−0.02430.61980.155*
H19C0.7441−0.04160.70990.155*
C200.1193 (7)0.0313 (11)0.6079 (6)0.096 (3)
H20A0.1590−0.08410.63060.144*
H20B0.15270.08960.56050.144*
H20C0.04290.00050.58100.144*
C210.0670 (7)0.0619 (15)0.7521 (6)0.088 (2)
C220.3508 (5)0.2610 (10)0.6074 (3)0.0609 (16)
H22A0.39270.35300.57970.091*
H22B0.28650.22180.56110.091*
H22C0.39660.15090.62840.091*
C230.6475 (4)0.2278 (10)0.9707 (3)0.0520 (15)
C240.7590 (5)0.4422 (11)0.9121 (4)0.0631 (17)
C250.8560 (5)0.1800 (12)1.0236 (5)0.070 (2)
H25A0.85280.18271.09010.084*
H25B0.92220.24981.01660.084*
C260.8656 (7)−0.0272 (14)0.9932 (5)0.090 (3)
H26A0.9292−0.08601.03490.109*
H26B0.7995−0.09661.00070.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N0.037 (2)0.070 (3)0.049 (2)−0.010 (2)0.0038 (17)0.004 (3)
C10.046 (3)0.034 (3)0.028 (2)0.002 (2)0.0057 (18)0.004 (2)
O10.124 (5)0.110 (6)0.137 (6)−0.016 (5)0.033 (4)−0.014 (5)
C20.041 (2)0.044 (3)0.039 (2)0.002 (2)0.002 (2)0.011 (2)
O20.1160.1140.114−0.0340.071−0.018
O30.046 (2)0.133 (5)0.067 (3)−0.014 (3)0.0006 (18)0.062 (3)
C30.050 (3)0.044 (3)0.060 (3)0.004 (3)−0.002 (2)0.006 (3)
C40.051 (3)0.028 (3)0.053 (3)0.005 (2)−0.003 (2)−0.001 (2)
O40.063 (3)0.124 (5)0.133 (5)−0.031 (3)0.000 (3)0.052 (4)
C50.060 (3)0.058 (4)0.080 (4)0.005 (3)0.000 (3)−0.004 (3)
O50.1050.1050.1050.0000.0220.000
C60.058 (4)0.058 (4)0.100 (5)0.014 (3)−0.023 (4)0.006 (4)
C70.078 (4)0.047 (4)0.076 (4)0.018 (4)−0.031 (4)0.007 (4)
C80.084 (4)0.033 (3)0.059 (3)0.018 (3)−0.009 (3)0.001 (3)
C90.060 (3)0.031 (3)0.038 (3)0.010 (3)−0.002 (2)−0.003 (2)
C100.056 (3)0.029 (2)0.029 (2)0.007 (2)0.007 (2)−0.003 (2)
C110.072 (4)0.035 (3)0.060 (3)−0.002 (3)0.001 (3)0.010 (3)
C120.066 (4)0.047 (3)0.061 (4)−0.018 (3)0.011 (3)0.011 (3)
C130.067 (4)0.042 (3)0.070 (4)−0.002 (3)0.002 (3)−0.010 (3)
C140.044 (3)0.053 (3)0.027 (2)0.002 (2)0.0063 (19)−0.009 (2)
C150.053 (3)0.029 (2)0.033 (2)0.001 (2)0.015 (2)−0.003 (2)
C160.058 (3)0.067 (4)0.040 (3)0.007 (3)0.017 (2)0.007 (3)
C170.088 (5)0.108 (7)0.067 (4)0.010 (5)0.051 (4)0.005 (5)
C180.0980.0980.0980.0000.0210.000
C190.095 (6)0.130 (8)0.096 (6)0.024 (6)0.044 (5)−0.034 (6)
C200.081 (5)0.049 (4)0.136 (7)0.003 (4)−0.029 (5)−0.017 (5)
C210.071 (4)0.090 (6)0.098 (5)0.009 (4)0.011 (4)0.005 (4)
C220.087 (4)0.058 (4)0.030 (2)0.014 (4)−0.006 (2)−0.007 (3)
C230.038 (3)0.079 (5)0.038 (3)0.001 (3)0.005 (2)0.000 (3)
C240.055 (3)0.069 (4)0.063 (4)−0.018 (3)0.007 (3)0.003 (3)
C250.038 (3)0.100 (6)0.064 (4)−0.005 (3)−0.004 (3)0.012 (4)
C260.089 (5)0.107 (7)0.078 (5)0.039 (5)0.022 (4)0.030 (5)

Geometric parameters (Å, °)

N—C231.395 (6)C10—C111.548 (7)
N—C241.407 (8)C10—H10A0.9800
N—C251.472 (7)C11—C121.536 (8)
C1—C151.506 (6)C11—H11A0.9700
C1—C21.535 (7)C11—H11B0.9700
C1—C101.563 (7)C12—C161.489 (9)
C1—C141.571 (6)C12—C131.551 (8)
O1—C211.251 (12)C12—H12A0.9800
C2—C31.535 (7)C13—C241.459 (9)
C2—H2A0.9700C13—C141.526 (8)
C2—H2B0.9700C13—H13A0.9800
O2—C211.222 (10)C14—C231.498 (8)
O2—H2C0.8500C14—H14A0.9800
O3—C231.192 (8)C15—C161.322 (8)
C3—C41.535 (7)C15—H15A0.9300
C3—H3A0.9700C16—C171.534 (8)
C3—H3B0.9700C17—C181.512 (11)
C4—C91.554 (8)C17—C191.586 (14)
C4—C51.567 (8)C17—H17A0.9800
C4—H4A0.9800C18—H18A0.9600
O4—C241.236 (7)C18—H18B0.9600
C5—C211.470 (11)C18—H18C0.9600
C5—C201.497 (10)C19—H19A0.9600
C5—C61.539 (9)C19—H19B0.9600
O5—C261.337 (9)C19—H19C0.9600
O5—H5A0.8500C20—H20A0.9600
C6—C71.491 (10)C20—H20B0.9600
C6—H6A0.9700C20—H20C0.9600
C6—H6B0.9700C22—H22A0.9600
C7—C81.503 (8)C22—H22B0.9600
C7—H7A0.9700C22—H22C0.9600
C7—H7B0.9700C25—C261.518 (13)
C8—C91.550 (7)C25—H25A0.9700
C8—H8A0.9700C25—H25B0.9700
C8—H8B0.9700C26—H26A0.9700
C9—C221.541 (7)C26—H26B0.9700
C9—C101.556 (7)
C23—N—C24110.5 (5)C11—C12—C13105.8 (5)
C23—N—C25124.2 (5)C16—C12—H12A110.9
C24—N—C25125.1 (5)C11—C12—H12A110.9
C15—C1—C2113.9 (4)C13—C12—H12A110.9
C15—C1—C10109.8 (3)C24—C13—C14105.3 (5)
C2—C1—C10111.4 (4)C24—C13—C12113.6 (5)
C15—C1—C14105.6 (4)C14—C13—C12107.9 (5)
C2—C1—C14111.0 (4)C24—C13—H13A110.0
C10—C1—C14104.6 (4)C14—C13—H13A110.0
C1—C2—C3113.4 (4)C12—C13—H13A110.0
C1—C2—H2A108.9C23—C14—C13105.1 (4)
C3—C2—H2A108.9C23—C14—C1114.6 (5)
C1—C2—H2B108.9C13—C14—C1111.8 (4)
C3—C2—H2B108.9C23—C14—H14A108.4
H2A—C2—H2B107.7C13—C14—H14A108.4
C21—O2—H2C107.4C1—C14—H14A108.4
C4—C3—C2109.9 (5)C16—C15—C1115.9 (5)
C4—C3—H3A109.7C16—C15—H15A122.1
C2—C3—H3A109.7C1—C15—H15A122.1
C4—C3—H3B109.7C15—C16—C12113.9 (5)
C2—C3—H3B109.7C15—C16—C17126.2 (7)
H3A—C3—H3B108.2C12—C16—C17119.8 (6)
C3—C4—C9110.0 (4)C18—C17—C16113.8 (7)
C3—C4—C5114.1 (5)C18—C17—C19108.9 (7)
C9—C4—C5115.5 (4)C16—C17—C19112.0 (7)
C3—C4—H4A105.4C18—C17—H17A107.3
C9—C4—H4A105.4C16—C17—H17A107.3
C5—C4—H4A105.4C19—C17—H17A107.3
C21—C5—C20102.6 (7)C17—C18—H18A109.5
C21—C5—C6111.0 (6)C17—C18—H18B109.5
C20—C5—C6112.1 (6)H18A—C18—H18B109.5
C21—C5—C4108.2 (5)C17—C18—H18C109.5
C20—C5—C4115.0 (6)H18A—C18—H18C109.5
C6—C5—C4107.7 (5)H18B—C18—H18C109.5
C26—O5—H5A118.4C17—C19—H19A109.5
C7—C6—C5113.8 (6)C17—C19—H19B109.5
C7—C6—H6A108.8H19A—C19—H19B109.5
C5—C6—H6A108.8C17—C19—H19C109.5
C7—C6—H6B108.8H19A—C19—H19C109.5
C5—C6—H6B108.8H19B—C19—H19C109.5
H6A—C6—H6B107.7C5—C20—H20A109.5
C6—C7—C8110.6 (5)C5—C20—H20B109.5
C6—C7—H7A109.5H20A—C20—H20B109.5
C8—C7—H7A109.5C5—C20—H20C109.5
C6—C7—H7B109.5H20A—C20—H20C109.5
C8—C7—H7B109.5H20B—C20—H20C109.5
H7A—C7—H7B108.1O2—C21—O1121.1 (9)
C7—C8—C9114.5 (5)O2—C21—C5115.3 (9)
C7—C8—H8A108.6O1—C21—C5123.6 (9)
C9—C8—H8A108.6C9—C22—H22A109.5
C7—C8—H8B108.6C9—C22—H22B109.5
C9—C8—H8B108.6H22A—C22—H22B109.5
H8A—C8—H8B107.6C9—C22—H22C109.5
C22—C9—C8109.7 (4)H22A—C22—H22C109.5
C22—C9—C4114.9 (5)H22B—C22—H22C109.5
C8—C9—C4107.1 (4)O3—C23—N120.6 (5)
C22—C9—C10109.9 (4)O3—C23—C14130.7 (5)
C8—C9—C10107.8 (4)N—C23—C14108.7 (5)
C4—C9—C10107.1 (4)O4—C24—N122.6 (6)
C11—C10—C9115.8 (4)O4—C24—C13127.2 (7)
C11—C10—C1107.8 (4)N—C24—C13110.2 (5)
C9—C10—C1114.8 (4)N—C25—C26112.7 (6)
C11—C10—H10A105.9N—C25—H25A109.1
C9—C10—H10A105.9C26—C25—H25A109.1
C1—C10—H10A105.9N—C25—H25B109.1
C12—C11—C10111.3 (4)C26—C25—H25B109.1
C12—C11—H11A109.4H25A—C25—H25B107.8
C10—C11—H11A109.4O5—C26—C25113.7 (7)
C12—C11—H11B109.4O5—C26—H26A108.8
C10—C11—H11B109.4C25—C26—H26A108.8
H11A—C11—H11B108.0O5—C26—H26B108.8
C16—C12—C11110.3 (5)C25—C26—H26B108.8
C16—C12—C13108.0 (5)H26A—C26—H26B107.7
C15—C1—C2—C3−77.6 (5)C12—C13—C14—C23124.2 (5)
C10—C1—C2—C347.3 (6)C24—C13—C14—C1−122.3 (5)
C14—C1—C2—C3163.3 (4)C12—C13—C14—C1−0.7 (6)
C1—C2—C3—C4−55.8 (6)C15—C1—C14—C23−65.5 (5)
C2—C3—C4—C963.4 (6)C2—C1—C14—C2358.4 (5)
C2—C3—C4—C5−164.9 (5)C10—C1—C14—C23178.7 (4)
C3—C4—C5—C2158.1 (7)C15—C1—C14—C1354.0 (5)
C9—C4—C5—C21−172.9 (6)C2—C1—C14—C13177.9 (5)
C3—C4—C5—C20−55.9 (8)C10—C1—C14—C13−61.9 (5)
C9—C4—C5—C2073.1 (7)C2—C1—C15—C16−177.4 (4)
C3—C4—C5—C6178.3 (6)C10—C1—C15—C1656.9 (6)
C9—C4—C5—C6−52.8 (7)C14—C1—C15—C16−55.3 (5)
C21—C5—C6—C7172.6 (6)C1—C15—C16—C12−1.6 (7)
C20—C5—C6—C7−73.3 (8)C1—C15—C16—C17−179.9 (5)
C4—C5—C6—C754.2 (8)C11—C12—C16—C15−54.7 (6)
C5—C6—C7—C8−57.6 (8)C13—C12—C16—C1560.5 (7)
C6—C7—C8—C957.4 (8)C11—C12—C16—C17123.8 (6)
C7—C8—C9—C2272.0 (7)C13—C12—C16—C17−121.0 (6)
C7—C8—C9—C4−53.3 (7)C15—C16—C17—C18118.0 (8)
C7—C8—C9—C10−168.3 (5)C12—C16—C17—C18−60.3 (9)
C3—C4—C9—C2260.7 (6)C15—C16—C17—C19−6.0 (10)
C5—C4—C9—C22−70.2 (6)C12—C16—C17—C19175.7 (7)
C3—C4—C9—C8−177.1 (4)C20—C5—C21—O2−176.4 (7)
C5—C4—C9—C851.9 (6)C6—C5—C21—O2−56.5 (9)
C3—C4—C9—C10−61.7 (5)C4—C5—C21—O261.5 (9)
C5—C4—C9—C10167.3 (5)C20—C5—C21—O13.9 (10)
C22—C9—C10—C1155.9 (6)C6—C5—C21—O1123.8 (9)
C8—C9—C10—C11−63.6 (6)C4—C5—C21—O1−118.1 (9)
C4—C9—C10—C11−178.6 (4)C24—N—C23—O3−174.9 (6)
C22—C9—C10—C1−70.8 (5)C25—N—C23—O30.2 (9)
C8—C9—C10—C1169.7 (4)C24—N—C23—C144.6 (6)
C4—C9—C10—C154.7 (5)C25—N—C23—C14179.6 (5)
C15—C1—C10—C11−51.5 (5)C13—C14—C23—O3175.0 (7)
C2—C1—C10—C11−178.7 (4)C1—C14—C23—O3−61.9 (8)
C14—C1—C10—C1161.4 (5)C13—C14—C23—N−4.4 (6)
C15—C1—C10—C979.2 (5)C1—C14—C23—N118.7 (5)
C2—C1—C10—C9−48.0 (5)C23—N—C24—O4179.3 (7)
C14—C1—C10—C9−167.9 (4)C25—N—C24—O44.3 (10)
C9—C10—C11—C12−131.2 (5)C23—N—C24—C13−2.9 (7)
C1—C10—C11—C12−1.1 (6)C25—N—C24—C13−177.9 (6)
C10—C11—C12—C1653.9 (6)C14—C13—C24—O4177.7 (7)
C10—C11—C12—C13−62.6 (6)C12—C13—C24—O459.9 (10)
C16—C12—C13—C2460.7 (7)C14—C13—C24—N0.0 (7)
C11—C12—C13—C24178.9 (5)C12—C13—C24—N−117.9 (6)
C16—C12—C13—C14−55.6 (6)C23—N—C25—C2666.0 (8)
C11—C12—C13—C1462.5 (6)C24—N—C25—C26−119.6 (7)
C24—C13—C14—C232.6 (6)N—C25—C26—O562.4 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2c···O5i0.852.163.010 (9)178
O5—H5a···O4ii0.852.343.076 (10)145
C10—H10A···O3iii0.982.553.470 (6)157
C14—H14A···O3iii0.982.383.316 (7)159

Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2627).

References

  • Enraf–Nonius (1994). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Penczek, P. (1970). Rocz. Chem.44, 1815–1818.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Walter, H. S. & Ray, A. L. (1967). J. Chem. Eng. Data, 12, 267–268.
  • Xiao, J. G. (2003). J. Hunan City Univ. (Natur. Sci.), 24, 92–93.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography