PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2562–o2563.
Published online 2009 September 26. doi:  10.1107/S1600536809038161
PMCID: PMC2970312

2-(Dimethyl­amino­meth­yl)phenyl phenyl telluride

Abstract

The title compound, C15H17NTe, is a heteroleptic Te, N-bidentate ligand having a short Te(...)N contact [2.8079 (16) Å] involving a secondary bonding inter­action between the amino N and TeII atoms. The Te—C bond [2.136 (2) Å] trans to the amino group is slightly elongated compared to the other Te—C bond [2.1242 (18) Å] due to the hypervalent inter­action. The bond angle for the trans N—Te—C atoms [164.92 (6)°] deviates significantly from linearity.

Related literature

For Heck and cross-coupling reactions, see: Cella et al. (2006 [triangle]); Nishibayashi et al. (1996a [triangle],b [triangle]); Zeni & Comasseto (1999 [triangle]); Zeni et al. (2001 [triangle]). For intra­molecularly coordinated tellurides, see: Detty et al. (1995 [triangle]); Drake et al. (2001 [triangle]); Engman et al. (2004 [triangle]); Kaur et al. (1995 [triangle], 2009 [triangle]); Menon et al. (1996 [triangle]); Panda et al. (1999 [triangle]); Singh et al. (1990 [triangle]). For van der Waals and covalent radii, see: Bondi (1964 [triangle]); Cordero et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2562-scheme1.jpg

Experimental

Crystal data

  • C15H17NTe
  • M r = 338.90
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2562-efi1.jpg
  • a = 8.5736 (3) Å
  • b = 13.2472 (5) Å
  • c = 12.6719 (4) Å
  • β = 95.933 (3)°
  • V = 1431.52 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.06 mm−1
  • T = 110 K
  • 0.49 × 0.41 × 0.27 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.728, T max = 1.000
  • 20642 measured reflections
  • 4836 independent reflections
  • 2926 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.058
  • S = 0.97
  • 4836 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038161/bt5068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038161/bt5068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HSB is grateful to the Department of Science and Technology (DST) for the award of a Ramanna Fellowship. TC is grateful to the CSIR for a JRF/SRF fellowship. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

Hydrid Te, N ligands with soft Te and hard N are of current interest due to their intramolecular coordination as the trans bond is activated and easily cleaved by metals (Kaur et al. 2009). Thus incorporation of soft tellurium and hard nitrogen into mixed donor Te, N bidentate ligands makes them interesting and promising as candidates for catalysts in combination with soft transition metals like Pd and the Rh group metals. Their coordination properties can be varied by changing the nitrogen function. Thus by introduction of a secondary bonding interaction which weakens the bond trans to Te in ortho-coordinated or suitably arranged substrates, the catalytic transformation of tellurides as substrates in Heck-type (Nishibayashi et al. 1996a; Nishibayashi et al. 1996b) and cross coupling (Zeni & Comasseto, 1999; Zeni et al. 2001; Cella et al. 2006) reactions and their coordination properties (Kaur et al. 2009) can be influenced. Our group (Singh et al. 1990; Kaur et al. 1995; Menon et al. 1996; Panda et al. 1999) as well as others (Detty et al. 1995; Drake et al. 2001, Engman et al. 2004) have been involved in the synthesis and studies of such intramolecularly coordinated organotellurides. The title compound, but not the structure, has been reported previously by Detty and co-workers as well as by our group (Kaur et al. 1995).

In the structure of the title compound, considering the bonding geometry around the Te as V-shaped with a longer intramolecular Te···N secondary interaction, a pseudo five-membered puckered ring can be envisioned. The Te···N distance of 2.8079 (16) Å is much greater than the sum of their covalent radii (2.11 Å; Cordero et al. 2008) but less than the sum of their van der Waal radii (3.61 Å; Bondi, 1964) and greater than the corresponding distance in similar compounds viz., 2-NMe2CH2C6H4TeCl (2.362 (3) Å; Engman et al. 2004), 2-NMe2CH2C6H4TeI (2.366 (4) Å; Kaur et al. 1995) or 8-(dimethylamino)-1-naphthyl phenyl telluride (2.713 (1) Å; Menon et al. 1996). Due to this hypervalent intramolecular Te···N contact the Te—C bond (2.137 (2) Å) trans to the amino group gets slightly elongated compared to the other Te—C bond (2.1249 (18) Å). The bond angle for the trans N—Te—C atoms (164.92 (6)°) deviates significantly from linearity.

Experimental

The title compound was prepared by the reported procedure (Kaur et al. 1995). A saturated solution of the compound was made in warm n-pentane and allowed to evaporate slowly at room temperature to grow crystals suitable for diffraction.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances ranging from 0.95 to 0.99 Å and Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for CH3 H atoms].

Figures

Fig. 1.
The molecular structure of C15H17NTe the showing the atom numbering scheme and 50% probability displacement ellipsoids. The secondary interaction between the N and Te is shown as a dashed line.
Fig. 2.
The molecular packing for C15H17NTe viewed down the a axis. The secondary interaction between the N and Te is shown by dashed lines.

Crystal data

C15H17NTeF(000) = 664
Mr = 338.90Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8619 reflections
a = 8.5736 (3) Åθ = 4.9–32.4°
b = 13.2472 (5) ŵ = 2.06 mm1
c = 12.6719 (4) ÅT = 110 K
β = 95.933 (3)°Prism, colorless
V = 1431.52 (9) Å30.49 × 0.41 × 0.27 mm
Z = 4

Data collection

Oxford Diffraction Gemini R CCD diffractometer4836 independent reflections
Radiation source: Enhance (Mo) X-ray Source2926 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 32.4°, θmin = 4.9°
ω scansh = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −18→19
Tmin = 0.728, Tmax = 1.000l = −18→18
20642 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0289P)2] where P = (Fo2 + 2Fc2)/3
4836 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Experimental. CrysAlis RED, (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Te0.886656 (14)0.206826 (9)0.327530 (10)0.04605 (6)
C71.0873 (2)−0.00329 (16)0.33777 (15)0.0462 (5)
H7A1.14840.02300.40250.055*
H7B1.1349−0.06810.31900.055*
C10.8142 (2)0.05794 (13)0.36112 (13)0.0373 (4)
C20.6624 (2)0.03853 (16)0.38466 (14)0.0460 (4)
H2A0.58880.09220.38400.055*
C30.6175 (2)−0.05790 (16)0.40897 (16)0.0533 (5)
H3A0.5134−0.07040.42490.064*
C40.7225 (3)−0.13543 (17)0.41016 (16)0.0566 (5)
H4A0.6923−0.20160.42870.068*
C50.8725 (3)−0.11769 (15)0.38443 (15)0.0497 (5)
H5A0.9435−0.17260.38310.060*
C60.9219 (2)−0.02150 (14)0.36041 (14)0.0395 (4)
N1.09600 (18)0.06793 (12)0.25179 (13)0.0470 (4)
C81.0372 (3)0.0248 (2)0.14988 (17)0.0711 (7)
H8A0.9302−0.00020.15330.107*
H8B1.1050−0.03110.13290.107*
H8C1.03660.07670.09470.107*
C91.2542 (3)0.1090 (2)0.2514 (2)0.0739 (7)
H9A1.28520.14260.31920.111*
H9B1.25590.15790.19340.111*
H9C1.32770.05400.24120.111*
C100.6957 (2)0.27717 (13)0.39468 (15)0.0433 (4)
C110.5679 (3)0.31290 (16)0.32958 (17)0.0554 (5)
H11A0.56330.30320.25500.066*
C120.4467 (3)0.36259 (18)0.37197 (19)0.0631 (6)
H12A0.35870.38560.32660.076*
C130.4534 (3)0.37856 (17)0.47833 (19)0.0609 (6)
H13A0.37090.41360.50710.073*
C140.5789 (3)0.34409 (18)0.54402 (18)0.0627 (6)
H14A0.58270.35480.61840.075*
C150.6989 (3)0.29428 (15)0.50326 (16)0.0536 (5)
H15B0.78560.27100.54970.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Te0.04845 (9)0.04144 (8)0.04904 (9)0.00098 (6)0.00871 (6)0.00703 (6)
C70.0416 (10)0.0500 (12)0.0469 (11)0.0059 (9)0.0049 (8)0.0024 (8)
C10.0395 (9)0.0410 (10)0.0314 (8)−0.0007 (8)0.0031 (7)−0.0031 (7)
C20.0416 (10)0.0501 (12)0.0468 (10)0.0001 (9)0.0069 (8)−0.0066 (9)
C30.0495 (11)0.0563 (14)0.0564 (12)−0.0160 (10)0.0169 (9)−0.0145 (10)
C40.0731 (15)0.0465 (13)0.0521 (12)−0.0174 (11)0.0154 (10)−0.0081 (9)
C50.0640 (13)0.0393 (11)0.0463 (11)0.0035 (10)0.0080 (9)−0.0023 (9)
C60.0424 (10)0.0416 (10)0.0341 (9)0.0011 (8)0.0025 (7)0.0013 (8)
N0.0431 (9)0.0491 (10)0.0503 (9)0.0027 (7)0.0128 (7)0.0049 (8)
C80.0833 (16)0.0851 (19)0.0466 (13)0.0158 (15)0.0149 (11)0.0025 (12)
C90.0555 (13)0.0756 (18)0.0948 (18)−0.0037 (12)0.0279 (12)0.0159 (14)
C100.0504 (11)0.0327 (10)0.0469 (11)−0.0005 (8)0.0049 (9)0.0028 (8)
C110.0605 (13)0.0542 (14)0.0499 (12)0.0097 (10)−0.0022 (10)−0.0012 (9)
C120.0563 (13)0.0605 (15)0.0712 (15)0.0165 (11)0.0005 (11)0.0013 (12)
C130.0652 (14)0.0455 (12)0.0755 (15)0.0070 (11)0.0238 (12)0.0006 (11)
C140.0827 (16)0.0591 (15)0.0486 (12)0.0050 (12)0.0171 (12)−0.0042 (10)
C150.0603 (13)0.0534 (13)0.0462 (11)0.0050 (10)0.0006 (9)0.0030 (9)

Geometric parameters (Å, °)

Te—C12.1242 (18)N—C91.462 (3)
Te—C102.136 (2)C8—H8A0.9800
Te—N2.8079 (16)C8—H8B0.9800
C7—N1.449 (2)C8—H8C0.9800
C7—C61.495 (2)C9—H9A0.9800
C7—H7A0.9900C9—H9B0.9800
C7—H7B0.9900C9—H9C0.9800
C1—C21.389 (3)C10—C111.385 (3)
C1—C61.401 (3)C10—C151.392 (3)
C2—C31.378 (3)C11—C121.384 (3)
C2—H2A0.9500C11—H11A0.9500
C3—C41.365 (3)C12—C131.360 (3)
C3—H3A0.9500C12—H12A0.9500
C4—C51.379 (3)C13—C141.369 (3)
C4—H4A0.9500C13—H13A0.9500
C5—C61.387 (3)C14—C151.368 (3)
C5—H5A0.9500C14—H14A0.9500
N—C81.454 (3)C15—H15B0.9500
C1—Te—C1094.19 (7)C9—N—Te112.55 (14)
C1—Te—N70.77 (6)N—C8—H8A109.5
C10—Te—N164.92 (6)N—C8—H8B109.5
N—C7—C6111.92 (14)H8A—C8—H8B109.5
N—C7—H7A109.2N—C8—H8C109.5
C6—C7—H7A109.2H8A—C8—H8C109.5
N—C7—H7B109.2H8B—C8—H8C109.5
C6—C7—H7B109.2N—C9—H9A109.5
H7A—C7—H7B107.9N—C9—H9B109.5
C2—C1—C6119.70 (17)H9A—C9—H9B109.5
C2—C1—Te120.99 (14)N—C9—H9C109.5
C6—C1—Te119.30 (13)H9A—C9—H9C109.5
C3—C2—C1120.59 (18)H9B—C9—H9C109.5
C3—C2—H2A119.7C11—C10—C15117.82 (19)
C1—C2—H2A119.7C11—C10—Te120.25 (15)
C4—C3—C2120.08 (19)C15—C10—Te121.81 (14)
C4—C3—H3A120.0C12—C11—C10120.7 (2)
C2—C3—H3A120.0C12—C11—H11A119.6
C3—C4—C5119.9 (2)C10—C11—H11A119.6
C3—C4—H4A120.0C13—C12—C11120.2 (2)
C5—C4—H4A120.0C13—C12—H12A119.9
C4—C5—C6121.48 (19)C11—C12—H12A119.9
C4—C5—H5A119.3C12—C13—C14120.0 (2)
C6—C5—H5A119.3C12—C13—H13A120.0
C5—C6—C1118.17 (17)C14—C13—H13A120.0
C5—C6—C7120.53 (17)C15—C14—C13120.4 (2)
C1—C6—C7121.27 (17)C15—C14—H14A119.8
C7—N—C8111.84 (17)C13—C14—H14A119.8
C7—N—C9111.41 (16)C14—C15—C10120.87 (19)
C8—N—C9112.33 (17)C14—C15—H15B119.6
C7—N—Te94.88 (10)C10—C15—H15B119.6
C8—N—Te112.69 (13)
C10—Te—C1—C217.26 (15)C6—C7—N—Te45.84 (15)
N—Te—C1—C2−161.59 (15)C1—Te—N—C7−35.48 (10)
C10—Te—C1—C6−162.12 (13)C10—Te—N—C7−39.9 (3)
N—Te—C1—C619.02 (12)C1—Te—N—C880.65 (15)
C6—C1—C2—C31.0 (3)C10—Te—N—C876.3 (3)
Te—C1—C2—C3−178.36 (13)C1—Te—N—C9−151.08 (15)
C1—C2—C3—C40.0 (3)C10—Te—N—C9−155.5 (2)
C2—C3—C4—C5−1.6 (3)C1—Te—C10—C11−101.37 (16)
C3—C4—C5—C62.2 (3)N—Te—C10—C11−97.2 (3)
C4—C5—C6—C1−1.1 (3)C1—Te—C10—C1582.60 (16)
C4—C5—C6—C7177.09 (17)N—Te—C10—C1586.8 (3)
C2—C1—C6—C5−0.5 (3)C15—C10—C11—C12−0.9 (3)
Te—C1—C6—C5178.88 (13)Te—C10—C11—C12−177.11 (17)
C2—C1—C6—C7−178.66 (16)C10—C11—C12—C131.2 (4)
Te—C1—C6—C70.7 (2)C11—C12—C13—C14−1.0 (4)
N—C7—C6—C5140.26 (18)C12—C13—C14—C150.6 (4)
N—C7—C6—C1−41.6 (2)C13—C14—C15—C10−0.3 (4)
C6—C7—N—C8−71.0 (2)C11—C10—C15—C140.5 (3)
C6—C7—N—C9162.38 (17)Te—C10—C15—C14176.60 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5068).

References

  • Bondi, A. (1964). J. Phys. Chem.68, 441–451.
  • Cella, R., Cunha, R. L. O., Reis, A. E. S., Pimenta, D. C., Klitzke, C. F. & Stefani, H. A. (2006). J. Org. Chem.71, 244–250. [PubMed]
  • Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838. [PubMed]
  • Detty, R. M., Friedman, A. E. & McMillan, M. (1995). Organometallics, 14, 1442–1449.
  • Drake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001). J. Organomet. Chem.623, 153–160.
  • Engman, L., Wojtoń, A., Oleksyn, B. J. & Śliwiński, J. (2004). Phosphorus Sulfur Silicon Relat. Elem.179, 285–292.
  • Kaur, R., Menon, S. C., Panda, A., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 14, 2363–2371.
  • Kaur, R., Singh, H. B. & Butcher, R. J. (1995). Organometallics, 14, 4745–4763.
  • Menon, S. C., Singh, H. B., Jasinski, J. M., Jasinski, J. P. & Butcher, R. J. (1996). Organometallics, 15, 1707–1712.
  • Nishibayashi, Y., Cho, C. S., Ohe, K. & Uemura, S. (1996a). J. Organomet. Chem.526, 335–339.
  • Nishibayashi, Y., Cho, C. S. & Uemura, S. (1996b). J. Organomet. Chem.507, 197–200.
  • Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  • Panda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986–1993.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, H. B., Sudha, N., West, A. A. & Hamor, T. A. (1990). J. Chem. Soc. Dalton Trans. pp. 907–913.
  • Zeni, C. & Comasseto, J. V. (1999). Tetrahedron Lett.40, 4619–4622.
  • Zeni, G., Menezes, P. H., Moro, A. V., Braga, A. L., Silveira, C. C. & Stefani, H. A. (2001). Synlett, 9, 1473–1475.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography