PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1174–m1175.
Published online 2009 September 5. doi:  10.1107/S1600536809034849
PMCID: PMC2970310

(Benzyl­amine)chloridobis(ethane-1,2-diamine)cobalt(III) dichloride hemihydrate

Abstract

In the title compound, [CoCl(C2H8N2)2(C7H9N)]Cl2·0.5H2O, there are two crystallographically independent cations and anions and one water mol­ecule in the asymmetric unit. Both CoIII ions are bonded to two chelating ethylenediamine ligands, one benzylamine molecule and one chloride ion. The crystal packing is through N—H(...)O, N—H(...)Cl and O—H(...)Cl inter­actions.

Related literature

For the importance of metal complexes in the fields of bio­logical catalysis and functions, see: Gray (2003 [triangle]); Wohrle & Pomogailo (2003 [triangle]). For the biomedical applications of cobalt complexes, see: Osinsky (2004 [triangle]); Roth et al. (2002 [triangle]). For puckering and asymmetry parameters, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]). For related structures, see: Lee et al. (2007 [triangle]); Ramesh et al. (2008 [triangle]). cis-[CoIII(en)2(BzNH2)Cl]Cl2·0.5H2O was synthesized (Bailer & Clapp, 1945 [triangle]) by substituting the chloride ligand with benzyl amine in trans-[Co(en)2Cl2]Cl (Bailer & Rollinson, 1946 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1174-scheme1.jpg

Experimental

Crystal data

  • [CoCl(C2H8N2)2(C7H9N)]Cl2·0.5H2O
  • M r = 401.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1174-efi1.jpg
  • a = 20.9361 (9) Å
  • b = 7.2447 (3) Å
  • c = 24.4340 (9) Å
  • β = 106.440 (2)°
  • V = 3554.5 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.42 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.718, T max = 0.765
  • 40140 measured reflections
  • 8911 independent reflections
  • 6475 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.096
  • S = 1.06
  • 8911 reflections
  • 458 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034849/bt5046sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034849/bt5046Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection and the management of Kandaswami Kandar’s College, Velur, Namakkal, India, for their encouragement to pursue the programme.

supplementary crystallographic information

Comment

Metal complexes find importance in the fields of biological catalysis and functions, such as in metabolism (Gray, 2003; Wohrle & Pomogailo, 2003). Cobalt complexes were also found to show biomedical applications and one such example is cancer therapy (Osinsky, 2004; Roth et al., 2002). Against this background and to ascertain the molecular conformation, the structure determination of the title compound has been carried out.

There are two crystallographically independent molecules in the asymmetric unit. The CoIII ion and the four N atoms almost lie in the same plane, whereas the other N and Cl atoms are approximately perpendicular to this plane. The Co—N and Co—Cl bond lengths are comparable with the related complexes (Lee et al., 2007; Ramesh et al., 2008). In the molecule A, the two five membered rings adopt twist conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) [for the ring Co1/N1/C2/C3/N4 are: q2 = 0.416 (3) Å, [var phi]= 90.4 (3)° and Δ2(Co1)= 0.10 (2)°; and for the ring Co1/N5/C6/C7/N8 are: q2 = 0.445 (3) Å, [var phi]= 90.7 (3)° and Δ2(Co1)= 1.1 (2)°]. One of the five membered rings in the molecule B adopts twist conformation, whereas the other ring adopts envelope conformation [for the ring Co1'/N1'/C2'/C3'/N4' are: q2 =0.393 (2) Å, [var phi]= 89.0 (3)° and Δ2(Co1')= 1.2 (2)°; and for the ring Co1'/N5'/C6'/C7'/N8' are: q2 = 0.443 (3) Å, [var phi]= 281.0 (3)° and Δ2(Co1')= 11.1 (1)°].

The crystal packing is controlled by N—H···O, N—H···Cl, O—H···Cl and C—H···π types of intra and intermolecular interactions. The two intra molecular N—H···O hydrogen bonds form a S(6) ring motif. The combination of N4'-H4'D···O1, N8'-H8D···Cl3' and O1—H2W···Cl3' hydrogen bonds connects the molecule into one dimensional chain running along b–axis.

Experimental

Cis-[CoIII(en)2(BzNH2)Cl]Cl2.1/2 H2O was synthesized (Bailer and Clapp, 1945), by substituting chloride ligand with benzyl amine (Bz) in trans- [Co(en)2Cl2]Cl (Bailer and Rollinson, 1946). Two grams of the cobalt(III) complex was suspended in 1 ml of water in a mortar. To this a definite amount of AnalaR benzylamine was added in drops with constant grinding to obtain a paste. A rosy red color was observed and the grinding was continued for another 1 hr to obtain a homogeneous solid mass. The paste was then allowed to stand overnight in a desicator. The Bz substituted complex was recrystallized twice using acidified water, dried and preserved in a desicator. Single crystal was grown by adding the metal complex in triply distilled water acidified with HCl and kept standing at 0°C for 2–3 weeks.

Refinement

Nitrogen and Oxygen H atoms were refined and other H atoms were positioned geometrically (C—H=0.93–0.97 Å) and allowed to ride on their parent atoms, with 1.2Ueq(C).

Figures

Fig. 1.
Perspective view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are omitted for clarity.
Fig. 2.
The crystal packing of the molecules viewed down the b–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[CoCl(C2H8N2)2(C7H9N)]Cl2·0.5H2OF(000) = 1672
Mr = 401.65Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4562 reflections
a = 20.9361 (9) Åθ = 1.0–28.4°
b = 7.2447 (3) ŵ = 1.42 mm1
c = 24.4340 (9) ÅT = 293 K
β = 106.440 (2)°Block, pink
V = 3554.5 (3) Å30.25 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker Kappa APEXII area-detector diffractometer8911 independent reflections
Radiation source: fine-focus sealed tube6475 reflections with I > 2σ(I)
graphiteRint = 0.044
ω and [var phi] scansθmax = 28.4°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −28→27
Tmin = 0.718, Tmax = 0.765k = −9→9
40140 measured reflectionsl = −32→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0439P)2 + 1.0235P] where P = (Fo2 + 2Fc2)/3
8911 reflections(Δ/σ)max = 0.003
458 parametersΔρmax = 0.61 e Å3
2 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.086901 (14)0.76169 (4)0.397792 (12)0.02243 (8)
Co1'0.378670 (14)0.24118 (4)0.376673 (12)0.02283 (8)
Cl10.18662 (3)0.89958 (10)0.40924 (3)0.04223 (16)
Cl1'0.28589 (3)0.41206 (9)0.36007 (3)0.04156 (16)
Cl20.03854 (4)1.27863 (9)0.47345 (3)0.04187 (16)
Cl2'0.44225 (3)−0.22621 (9)0.47024 (3)0.03979 (16)
Cl30.07194 (4)1.07730 (10)0.24584 (3)0.04584 (17)
Cl3'0.40208 (4)0.54666 (10)0.23461 (3)0.04853 (18)
O10.46177 (15)−0.0796 (4)0.28551 (13)0.0771 (8)
H1W0.4962 (16)−0.050 (6)0.2760 (17)0.091 (15)*
H2W0.453 (2)−0.189 (3)0.2743 (17)0.090 (14)*
N10.04245 (11)0.9940 (3)0.37372 (10)0.0301 (5)
H1A0.0583 (14)1.045 (4)0.3509 (12)0.040 (8)*
H1B0.0506 (12)1.073 (4)0.4018 (11)0.030 (7)*
N1'0.42817 (10)0.4624 (3)0.36963 (10)0.0285 (4)
H1C0.4186 (17)0.486 (5)0.3355 (15)0.066 (11)*
H1D0.4160 (13)0.558 (4)0.3874 (11)0.033 (7)*
C2−0.02989 (13)0.9642 (4)0.34926 (11)0.0372 (6)
H2A−0.03960.92550.30970.045*
H2B−0.05411.07740.35080.045*
C2'0.50016 (12)0.4304 (4)0.39128 (12)0.0399 (6)
H2C0.51480.44590.43240.048*
H2D0.52410.51750.37430.048*
C3−0.04994 (12)0.8175 (4)0.38393 (11)0.0385 (6)
H3A−0.04850.86480.42140.046*
H3B−0.09490.77590.36530.046*
C3'0.51319 (13)0.2377 (4)0.37573 (13)0.0402 (6)
H3C0.50890.22990.33520.048*
H3D0.55800.20070.39660.048*
N4−0.00203 (10)0.6626 (3)0.38910 (10)0.0293 (4)
H4A−0.0026 (13)0.589 (4)0.4168 (12)0.039 (8)*
H4B−0.0154 (14)0.589 (4)0.3567 (13)0.044 (8)*
N4'0.46398 (10)0.1153 (3)0.39043 (10)0.0300 (5)
H4C0.4779 (15)0.075 (4)0.4248 (13)0.049 (9)*
H4D0.4624 (13)0.019 (4)0.3731 (11)0.032 (8)*
N50.12897 (11)0.5183 (3)0.41295 (9)0.0296 (4)
H5A0.1141 (13)0.451 (4)0.4369 (11)0.037 (8)*
H5B0.1737 (15)0.547 (4)0.4276 (11)0.040 (8)*
N5'0.32999 (11)0.0116 (3)0.37956 (9)0.0287 (4)
H5C0.2923 (14)0.045 (4)0.3883 (11)0.036 (7)*
H5D0.3548 (15)−0.055 (4)0.4060 (13)0.044 (9)*
C60.11746 (13)0.4154 (3)0.35841 (11)0.0329 (5)
H6A0.07320.36200.34740.039*
H6B0.14980.31690.36230.039*
C6'0.31418 (14)−0.0861 (4)0.32408 (11)0.0398 (6)
H6C0.2753−0.16410.31950.048*
H6D0.3514−0.16310.32200.048*
C70.12481 (13)0.5530 (3)0.31469 (11)0.0333 (5)
H7A0.17070.59400.32290.040*
H7B0.11160.49870.27690.040*
C7'0.30080 (14)0.0588 (4)0.27837 (11)0.0431 (7)
H7C0.29750.00360.24150.052*
H7D0.25960.12320.27630.052*
N80.08093 (11)0.7084 (3)0.31812 (9)0.0278 (4)
H8A0.0920 (15)0.810 (5)0.3010 (13)0.055 (9)*
H8B0.0437 (14)0.683 (4)0.3021 (12)0.037 (8)*
N8'0.35805 (12)0.1872 (3)0.29494 (9)0.0331 (5)
H8C0.3901 (16)0.134 (4)0.2844 (13)0.051 (9)*
H8D0.3526 (15)0.293 (4)0.2772 (13)0.051 (9)*
N90.09587 (11)0.8161 (3)0.47994 (8)0.0305 (5)
H9A0.0589 (18)0.808 (5)0.4869 (14)0.068 (11)*
H9B0.1073 (15)0.934 (4)0.4830 (12)0.048 (9)*
N9'0.39414 (11)0.2930 (3)0.45935 (9)0.0301 (5)
H9C0.4328 (15)0.255 (4)0.4767 (12)0.038 (8)*
H9D0.3938 (12)0.410 (4)0.4623 (10)0.024 (7)*
C100.14694 (15)0.7113 (4)0.52328 (11)0.0466 (7)
H10A0.18690.70330.51070.056*
H10B0.13070.58660.52500.056*
C10'0.34564 (14)0.2178 (4)0.48815 (11)0.0390 (6)
H10C0.35850.09280.50080.047*
H10D0.30180.21270.46090.047*
C110.16542 (13)0.7919 (4)0.58258 (11)0.0370 (6)
C11'0.34216 (12)0.3326 (4)0.53849 (11)0.0350 (6)
C120.15612 (14)0.6896 (5)0.62752 (12)0.0482 (7)
H120.13460.57600.62040.058*
C12'0.35761 (15)0.2587 (4)0.59266 (12)0.0464 (7)
H12'0.37060.13580.59860.056*
C130.17863 (16)0.7549 (6)0.68334 (13)0.0595 (10)
H130.17220.68550.71340.071*
C13'0.35379 (18)0.3676 (6)0.63837 (13)0.0624 (10)
H13'0.36400.31670.67480.075*
C140.20967 (15)0.9192 (6)0.69345 (14)0.0643 (10)
H140.22520.96200.73070.077*
C14'0.33530 (17)0.5479 (6)0.63053 (15)0.0631 (10)
H14'0.33320.62010.66150.076*
C150.21876 (15)1.0241 (5)0.64982 (15)0.0619 (9)
H150.24001.13780.65750.074*
C15'0.31972 (14)0.6229 (5)0.57686 (15)0.0548 (8)
H15'0.30710.74620.57140.066*
C160.19618 (15)0.9606 (4)0.59400 (13)0.0487 (7)
H160.20191.03260.56420.058*
C16'0.32269 (13)0.5152 (4)0.53083 (13)0.0436 (7)
H16'0.31150.56620.49440.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.01975 (15)0.02389 (16)0.02415 (16)0.00014 (12)0.00701 (12)0.00230 (12)
Co1'0.01926 (15)0.02633 (16)0.02270 (16)−0.00031 (12)0.00564 (12)0.00163 (12)
Cl10.0292 (3)0.0464 (4)0.0532 (4)−0.0123 (3)0.0149 (3)−0.0018 (3)
Cl1'0.0254 (3)0.0454 (4)0.0503 (4)0.0103 (3)0.0049 (3)0.0065 (3)
Cl20.0563 (4)0.0368 (4)0.0404 (4)−0.0037 (3)0.0264 (3)−0.0006 (3)
Cl2'0.0416 (4)0.0367 (3)0.0360 (3)0.0009 (3)0.0028 (3)0.0037 (3)
Cl30.0526 (4)0.0451 (4)0.0382 (4)0.0053 (3)0.0102 (3)0.0142 (3)
Cl3'0.0563 (5)0.0478 (4)0.0434 (4)−0.0077 (3)0.0172 (3)0.0094 (3)
O10.0703 (18)0.0750 (19)0.103 (2)−0.0202 (15)0.0519 (17)−0.0476 (16)
N10.0357 (12)0.0265 (11)0.0293 (11)0.0034 (9)0.0111 (10)0.0015 (9)
N1'0.0266 (11)0.0296 (11)0.0286 (11)−0.0022 (8)0.0065 (9)0.0016 (9)
C20.0335 (14)0.0399 (15)0.0340 (14)0.0148 (11)0.0028 (11)−0.0009 (11)
C2'0.0282 (13)0.0447 (16)0.0457 (16)−0.0104 (12)0.0085 (12)−0.0029 (12)
C30.0234 (13)0.0556 (17)0.0379 (14)0.0086 (12)0.0109 (11)−0.0016 (12)
C3'0.0272 (13)0.0449 (16)0.0527 (17)−0.0045 (11)0.0182 (12)−0.0063 (13)
N40.0244 (11)0.0349 (12)0.0288 (11)−0.0010 (9)0.0082 (9)0.0050 (9)
N4'0.0290 (11)0.0306 (12)0.0322 (12)0.0022 (9)0.0116 (10)0.0026 (10)
N50.0286 (12)0.0294 (11)0.0319 (11)0.0025 (9)0.0105 (10)0.0044 (9)
N5'0.0257 (11)0.0331 (11)0.0286 (11)−0.0027 (9)0.0096 (9)0.0020 (9)
C60.0326 (13)0.0277 (12)0.0387 (14)0.0045 (10)0.0105 (11)−0.0014 (10)
C6'0.0463 (16)0.0359 (14)0.0395 (15)−0.0155 (12)0.0159 (12)−0.0071 (11)
C70.0343 (14)0.0347 (14)0.0335 (13)0.0060 (11)0.0136 (11)−0.0016 (10)
C7'0.0444 (16)0.0530 (18)0.0294 (14)−0.0202 (14)0.0064 (12)−0.0079 (12)
N80.0260 (12)0.0305 (11)0.0279 (11)0.0013 (9)0.0093 (9)0.0028 (8)
N8'0.0373 (13)0.0347 (12)0.0274 (11)−0.0104 (10)0.0090 (10)0.0000 (9)
N90.0266 (12)0.0394 (13)0.0243 (10)0.0015 (9)0.0053 (9)0.0020 (9)
N9'0.0251 (11)0.0382 (13)0.0276 (11)0.0001 (9)0.0084 (9)−0.0004 (9)
C100.0485 (18)0.0532 (18)0.0299 (14)0.0133 (14)−0.0026 (13)−0.0027 (12)
C10'0.0430 (16)0.0448 (16)0.0352 (14)−0.0079 (12)0.0210 (12)−0.0057 (12)
C110.0265 (13)0.0515 (17)0.0286 (13)0.0064 (11)0.0007 (10)−0.0020 (11)
C11'0.0297 (13)0.0461 (15)0.0329 (13)−0.0057 (11)0.0149 (11)−0.0035 (11)
C120.0353 (16)0.0614 (19)0.0449 (17)0.0061 (14)0.0062 (13)0.0066 (14)
C12'0.0500 (18)0.0554 (18)0.0387 (15)−0.0091 (14)0.0206 (14)0.0021 (13)
C130.0387 (17)0.106 (3)0.0333 (16)0.0176 (19)0.0089 (13)0.0153 (17)
C13'0.069 (2)0.090 (3)0.0370 (17)−0.026 (2)0.0282 (16)−0.0092 (17)
C140.0352 (17)0.117 (3)0.0351 (17)0.0052 (19)0.0018 (14)−0.0164 (19)
C14'0.055 (2)0.090 (3)0.058 (2)−0.0272 (19)0.0379 (18)−0.0359 (19)
C150.0395 (18)0.080 (3)0.062 (2)−0.0099 (16)0.0085 (16)−0.0290 (19)
C15'0.0350 (16)0.059 (2)0.077 (2)−0.0031 (14)0.0271 (16)−0.0213 (17)
C160.0410 (17)0.061 (2)0.0433 (17)0.0004 (14)0.0109 (13)−0.0036 (14)
C16'0.0290 (14)0.0562 (18)0.0456 (16)0.0028 (12)0.0105 (12)−0.0015 (13)

Geometric parameters (Å, °)

Co1—N11.933 (2)C6'—H6C0.9700
Co1—N41.950 (2)C6'—H6D0.9700
Co1—N81.954 (2)C7—N81.471 (3)
Co1—N51.959 (2)C7—H7A0.9700
Co1—N92.001 (2)C7—H7B0.9700
Co1—Cl12.2592 (7)C7'—N8'1.480 (3)
Co1'—N1'1.942 (2)C7'—H7C0.9700
Co1'—N4'1.948 (2)C7'—H7D0.9700
Co1'—N8'1.959 (2)N8—H8A0.91 (3)
Co1'—N5'1.962 (2)N8—H8B0.79 (3)
Co1'—N9'1.989 (2)N8'—H8C0.87 (3)
Co1'—Cl1'2.2415 (7)N8'—H8D0.87 (3)
O1—H1W0.84 (3)N9—C101.483 (3)
O1—H2W0.842 (17)N9—H9A0.84 (4)
N1—C21.478 (3)N9—H9B0.89 (3)
N1—H1A0.81 (3)N9'—C10'1.492 (3)
N1—H1B0.87 (3)N9'—H9C0.85 (3)
N1'—C2'1.468 (3)N9'—H9D0.85 (3)
N1'—H1C0.82 (3)C10—C111.507 (4)
N1'—H1D0.89 (3)C10—H10A0.9700
C2—C31.491 (4)C10—H10B0.9700
C2—H2A0.9700C10'—C11'1.503 (3)
C2—H2B0.9700C10'—H10C0.9700
C2'—C3'1.492 (4)C10'—H10D0.9700
C2'—H2C0.9700C11—C161.373 (4)
C2'—H2D0.9700C11—C121.384 (4)
C3—N41.487 (3)C11'—C12'1.379 (4)
C3—H3A0.9700C11'—C16'1.381 (4)
C3—H3B0.9700C12—C131.394 (4)
C3'—N4'1.479 (3)C12—H120.9300
C3'—H3C0.9700C12'—C13'1.388 (4)
C3'—H3D0.9700C12'—H12'0.9300
N4—H4A0.87 (3)C13—C141.345 (5)
N4—H4B0.93 (3)C13—H130.9300
N4'—H4C0.86 (3)C13'—C14'1.361 (5)
N4'—H4D0.81 (3)C13'—H13'0.9300
N5—C61.486 (3)C14—C151.366 (5)
N5—H5A0.88 (3)C14—H140.9300
N5—H5B0.93 (3)C14'—C15'1.371 (5)
N5'—C6'1.481 (3)C14'—H14'0.9300
N5'—H5C0.91 (3)C15—C161.389 (4)
N5'—H5D0.85 (3)C15—H150.9300
C6—C71.500 (3)C15'—C16'1.385 (4)
C6—H6A0.9700C15'—H15'0.9300
C6—H6B0.9700C16—H160.9300
C6'—C7'1.500 (4)C16'—H16'0.9300
N1—Co1—N485.69 (9)N5—C6—H6B110.4
N1—Co1—N888.81 (9)C7—C6—H6B110.4
N4—Co1—N891.65 (10)H6A—C6—H6B108.6
N1—Co1—N5173.44 (9)N5'—C6'—C7'107.0 (2)
N4—Co1—N593.07 (9)N5'—C6'—H6C110.3
N8—Co1—N584.78 (9)C7'—C6'—H6C110.3
N1—Co1—N991.95 (10)N5'—C6'—H6D110.3
N4—Co1—N989.85 (10)C7'—C6'—H6D110.3
N8—Co1—N9178.36 (9)H6C—C6'—H6D108.6
N5—Co1—N994.48 (9)N8—C7—C6106.04 (19)
N1—Co1—Cl190.06 (7)N8—C7—H7A110.5
N4—Co1—Cl1175.24 (7)C6—C7—H7A110.5
N8—Co1—Cl190.41 (7)N8—C7—H7B110.5
N5—Co1—Cl191.40 (7)C6—C7—H7B110.5
N9—Co1—Cl188.14 (7)H7A—C7—H7B108.7
N1'—Co1'—N4'85.16 (9)N8'—C7'—C6'105.7 (2)
N1'—Co1'—N8'92.50 (9)N8'—C7'—H7C110.6
N4'—Co1'—N8'90.53 (11)C6'—C7'—H7C110.6
N1'—Co1'—N5'176.43 (9)N8'—C7'—H7D110.6
N4'—Co1'—N5'93.27 (9)C6'—C7'—H7D110.6
N8'—Co1'—N5'84.30 (9)H7C—C7'—H7D108.7
N1'—Co1'—N9'89.81 (10)C7—N8—Co1110.07 (15)
N4'—Co1'—N9'92.02 (10)C7—N8—H8A110 (2)
N8'—Co1'—N9'176.70 (9)Co1—N8—H8A110 (2)
N5'—Co1'—N9'93.45 (9)C7—N8—H8B110 (2)
N1'—Co1'—Cl1'89.14 (7)Co1—N8—H8B108 (2)
N4'—Co1'—Cl1'174.30 (7)H8A—N8—H8B108 (3)
N8'—Co1'—Cl1'89.78 (8)C7'—N8'—Co1'109.39 (16)
N5'—Co1'—Cl1'92.42 (7)C7'—N8'—H8C106 (2)
N9'—Co1'—Cl1'87.90 (7)Co1'—N8'—H8C115 (2)
H1W—O1—H2W106 (4)C7'—N8'—H8D116 (2)
C2—N1—Co1110.22 (16)Co1'—N8'—H8D107 (2)
C2—N1—H1A111 (2)H8C—N8'—H8D104 (3)
Co1—N1—H1A111 (2)C10—N9—Co1117.35 (17)
C2—N1—H1B111.4 (17)C10—N9—H9A110 (2)
Co1—N1—H1B111.2 (17)Co1—N9—H9A111 (2)
H1A—N1—H1B102 (3)C10—N9—H9B108.2 (19)
C2'—N1'—Co1'110.90 (16)Co1—N9—H9B102.8 (19)
C2'—N1'—H1C109 (2)H9A—N9—H9B107 (3)
Co1'—N1'—H1C106 (2)C10'—N9'—Co1'118.23 (17)
C2'—N1'—H1D110.6 (17)C10'—N9'—H9C109.1 (19)
Co1'—N1'—H1D111.5 (17)Co1'—N9'—H9C107.7 (19)
H1C—N1'—H1D108 (3)C10'—N9'—H9D107.5 (16)
N1—C2—C3107.2 (2)Co1'—N9'—H9D105.7 (16)
N1—C2—H2A110.3H9C—N9'—H9D108 (2)
C3—C2—H2A110.3N9—C10—C11115.2 (2)
N1—C2—H2B110.3N9—C10—H10A108.5
C3—C2—H2B110.3C11—C10—H10A108.5
H2A—C2—H2B108.5N9—C10—H10B108.5
N1'—C2'—C3'107.4 (2)C11—C10—H10B108.5
N1'—C2'—H2C110.2H10A—C10—H10B107.5
C3'—C2'—H2C110.2N9'—C10'—C11'112.4 (2)
N1'—C2'—H2D110.2N9'—C10'—H10C109.1
C3'—C2'—H2D110.2C11'—C10'—H10C109.1
H2C—C2'—H2D108.5N9'—C10'—H10D109.1
N4—C3—C2107.13 (19)C11'—C10'—H10D109.1
N4—C3—H3A110.3H10C—C10'—H10D107.9
C2—C3—H3A110.3C16—C11—C12118.6 (3)
N4—C3—H3B110.3C16—C11—C10121.2 (3)
C2—C3—H3B110.3C12—C11—C10120.0 (3)
H3A—C3—H3B108.5C12'—C11'—C16'118.8 (3)
N4'—C3'—C2'108.0 (2)C12'—C11'—C10'121.2 (3)
N4'—C3'—H3C110.1C16'—C11'—C10'120.0 (2)
C2'—C3'—H3C110.1C11—C12—C13120.7 (3)
N4'—C3'—H3D110.1C11—C12—H12119.7
C2'—C3'—H3D110.1C13—C12—H12119.7
H3C—C3'—H3D108.4C11'—C12'—C13'120.0 (3)
C3—N4—Co1109.37 (17)C11'—C12'—H12'120.0
C3—N4—H4A112.0 (18)C13'—C12'—H12'120.0
Co1—N4—H4A111.5 (18)C14—C13—C12119.5 (3)
C3—N4—H4B109.0 (18)C14—C13—H13120.3
Co1—N4—H4B110.7 (17)C12—C13—H13120.3
H4A—N4—H4B104 (3)C14'—C13'—C12'120.8 (3)
C3'—N4'—Co1'110.18 (16)C14'—C13'—H13'119.6
C3'—N4'—H4C112 (2)C12'—C13'—H13'119.6
Co1'—N4'—H4C112 (2)C13—C14—C15121.1 (3)
C3'—N4'—H4D108.3 (19)C13—C14—H14119.5
Co1'—N4'—H4D114.4 (19)C15—C14—H14119.5
H4C—N4'—H4D100 (3)C13'—C14'—C15'119.7 (3)
C6—N5—Co1109.37 (15)C13'—C14'—H14'120.1
C6—N5—H5A108.6 (17)C15'—C14'—H14'120.1
Co1—N5—H5A113.4 (17)C14—C15—C16119.9 (3)
C6—N5—H5B110.4 (17)C14—C15—H15120.1
Co1—N5—H5B102.9 (17)C16—C15—H15120.1
H5A—N5—H5B112 (2)C14'—C15'—C16'120.0 (3)
C6'—N5'—Co1'110.85 (15)C14'—C15'—H15'120.0
C6'—N5'—H5C111.1 (17)C16'—C15'—H15'120.0
Co1'—N5'—H5C106.0 (17)C11—C16—C15120.3 (3)
C6'—N5'—H5D110.8 (19)C11—C16—H16119.9
Co1'—N5'—H5D107.1 (19)C15—C16—H16119.9
H5C—N5'—H5D111 (3)C11'—C16'—C15'120.6 (3)
N5—C6—C7106.4 (2)C11'—C16'—H16'119.7
N5—C6—H6A110.4C15'—C16'—H16'119.7
C7—C6—H6A110.4
N4—Co1—N1—C2−13.68 (17)N4—Co1—N8—C7−108.29 (17)
N8—Co1—N1—C278.07 (18)N5—Co1—N8—C7−15.35 (17)
N5—Co1—N1—C265.6 (9)N9—Co1—N8—C748 (3)
N9—Co1—N1—C2−103.38 (18)Cl1—Co1—N8—C776.01 (16)
Cl1—Co1—N1—C2168.47 (17)C6'—C7'—N8'—Co1'−44.3 (3)
N4'—Co1'—N1'—C2'−13.81 (18)N1'—Co1'—N8'—C7'−161.0 (2)
N8'—Co1'—N1'—C2'−104.13 (19)N4'—Co1'—N8'—C7'113.9 (2)
N5'—Co1'—N1'—C2'−77.8 (16)N5'—Co1'—N8'—C7'20.6 (2)
N9'—Co1'—N1'—C2'78.23 (19)N9'—Co1'—N8'—C7'−26.6 (19)
Cl1'—Co1'—N1'—C2'166.13 (17)Cl1'—Co1'—N8'—C7'−71.82 (19)
Co1—N1—C2—C338.0 (2)N1—Co1—N9—C10−160.1 (2)
Co1'—N1'—C2'—C3'36.6 (3)N4—Co1—N9—C10114.2 (2)
N1—C2—C3—N4−48.9 (3)N8—Co1—N9—C10−42 (3)
N1'—C2'—C3'—N4'−46.5 (3)N5—Co1—N9—C1021.1 (2)
C2—C3—N4—Co137.9 (2)Cl1—Co1—N9—C10−70.1 (2)
N1—Co1—N4—C3−13.78 (17)N1'—Co1'—N9'—C10'154.6 (2)
N8—Co1—N4—C3−102.47 (17)N4'—Co1'—N9'—C10'−120.3 (2)
N5—Co1—N4—C3172.67 (17)N8'—Co1'—N9'—C10'20.1 (19)
N9—Co1—N4—C378.19 (17)N5'—Co1'—N9'—C10'−26.9 (2)
Cl1—Co1—N4—C313.1 (9)Cl1'—Co1'—N9'—C10'65.4 (2)
C2'—C3'—N4'—Co1'35.6 (3)Co1—N9—C10—C11163.4 (2)
N1'—Co1'—N4'—C3'−12.49 (19)Co1'—N9'—C10'—C11'−152.63 (19)
N8'—Co1'—N4'—C3'79.97 (19)N9—C10—C11—C16−64.9 (4)
N5'—Co1'—N4'—C3'164.29 (18)N9—C10—C11—C12120.1 (3)
N9'—Co1'—N4'—C3'−102.13 (19)N9'—C10'—C11'—C12'−119.6 (3)
Cl1'—Co1'—N4'—C3'−13.1 (9)N9'—C10'—C11'—C16'60.9 (3)
N1—Co1—N5—C6−1.6 (9)C16—C11—C12—C13−1.2 (4)
N4—Co1—N5—C677.27 (17)C10—C11—C12—C13174.0 (3)
N8—Co1—N5—C6−14.11 (17)C16'—C11'—C12'—C13'−0.3 (4)
N9—Co1—N5—C6167.36 (17)C10'—C11'—C12'—C13'−179.8 (3)
Cl1—Co1—N5—C6−104.39 (16)C11—C12—C13—C140.0 (5)
N1'—Co1'—N5'—C6'−18.2 (16)C11'—C12'—C13'—C14'−0.4 (5)
N4'—Co1'—N5'—C6'−82.01 (19)C12—C13—C14—C150.8 (5)
N8'—Co1'—N5'—C6'8.20 (19)C12'—C13'—C14'—C15'0.5 (5)
N9'—Co1'—N5'—C6'−174.23 (19)C13—C14—C15—C16−0.5 (5)
Cl1'—Co1'—N5'—C6'97.73 (18)C13'—C14'—C15'—C16'0.1 (5)
Co1—N5—C6—C739.8 (2)C12—C11—C16—C151.5 (4)
Co1'—N5'—C6'—C7'−34.7 (3)C10—C11—C16—C15−173.6 (3)
N5—C6—C7—N8−52.0 (3)C14—C15—C16—C11−0.7 (5)
N5'—C6'—C7'—N8'50.7 (3)C12'—C11'—C16'—C15'1.0 (4)
C6—C7—N8—Co140.9 (2)C10'—C11'—C16'—C15'−179.5 (2)
N1—Co1—N8—C7166.07 (18)C14'—C15'—C16'—C11'−0.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.81 (3)2.67 (3)3.406 (2)151 (3)
N1—H1B···Cl20.87 (3)2.36 (3)3.211 (2)163 (2)
N8—H8A···Cl30.91 (3)2.33 (3)3.179 (2)156 (3)
N4'—H4D···O10.81 (3)2.25 (3)2.915 (3)139 (2)
N8'—H8C···O10.87 (3)2.15 (3)2.964 (4)155 (3)
N1'—H1C···Cl3'0.82 (3)2.43 (4)3.246 (2)174 (3)
N4—H4A···Cl2i0.87 (3)2.65 (3)3.423 (2)149 (2)
N5'—H5D···Cl2'0.85 (3)2.39 (3)3.233 (2)168 (3)
N8'—H8D···Cl3'0.87 (3)2.48 (3)3.252 (2)148 (3)
N4—H4B···Cl3ii0.93 (3)2.45 (3)3.265 (2)147 (2)
N8—H8B···Cl3ii0.79 (3)2.49 (3)3.280 (2)176 (3)
N9—H9A···Cl2iii0.84 (4)2.57 (4)3.391 (2)166 (3)
N5'—H5C···Cl1i0.91 (3)2.63 (3)3.380 (2)141 (2)
N1'—H1D···Cl2'iv0.89 (3)2.49 (3)3.288 (2)149 (2)
N9'—H9D···Cl2'iv0.85 (3)2.81 (3)3.615 (2)158 (2)
N5—H5A···Cl2i0.88 (3)2.38 (3)3.220 (2)159 (2)
O1—H2W···Cl3'i0.84 (2)2.27 (2)3.092 (3)165 (4)

Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z+1/2; (iii) −x, −y+2, −z+1; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5046).

References

  • Bailer, J. C. & Clapp, L. B. (1945). J. Am. Chem. Soc.67, 171–175.
  • Bailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222–223.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gray, H. B. (2003). Proc. Natl Acad. Sci. USA, 100, 3563–3568. [PubMed]
  • Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Osinsky, S. (2004). Exp Oncol.26, 140–144. [PubMed]
  • Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301. [PMC free article] [PubMed]
  • Roth, T., Eckert, C., Fiebig, H. H. & Jung, M. (2002). Anticancer Res 22, 2281–2284. [PubMed]
  • Sheldrick, G. M. (2001). SADABS Version 2.03. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wohrle, D. & Pomogailo, A. D. (2003). Metal Complexes and Metals in Macromolecules Weinheim: Wiley-VCH.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography