PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2462.
Published online 2009 September 12. doi:  10.1107/S1600536809033753
PMCID: PMC2970305

4-[1-(Hydroxy­imino)ethyl]-N-(4-nitro­benzyl­idene)aniline

Abstract

In the title compound, C15H13N3O3, the dihedral angle formed by the two benzene rings is 44.23 (2)°. The crystal structure is stabilized by aromatic π–π stacking inter­actions, with centroid-centroid distances of 3.825 (3) and 3.870 (4) Å between the aniline and the nitro­benzene rings of neighbouring mol­ecules, respectively. In addition, the stacked mol­ecules exhibit inter­molecular C—H(...)N and C—H(...)O inter­actions.

Related literature

For background to Schiff bases, see: Lozier et al. (1975 [triangle]). For the synthesis, see: Rafiq et al. (2008 [triangle]); Duan et al. (2007 [triangle]); Dong et al. (2008 [triangle]). For related structures, see: Bomfim et al. (2005 [triangle]); Fun et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2462-scheme1.jpg

Experimental

Crystal data

  • C15H13N3O3
  • M r = 283.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2462-efi9.jpg
  • a = 7.375 (1) Å
  • b = 10.770 (2) Å
  • c = 16.906 (2) Å
  • V = 1342.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.50 × 0.35 × 0.10 mm

Data collection

  • Bruker SMART1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.952, T max = 0.990
  • 7656 measured reflections
  • 1700 independent reflections
  • 899 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.115
  • S = 1.03
  • 1700 reflections
  • 195 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks 2, I. DOI: 10.1107/S1600536809033753/lx2109sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033753/lx2109Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Foundation of the Education Department of Gansu Province (No. 20873).

supplementary crystallographic information

Comment

It is well known that Schiff bases are one of the most popular mixed-donor ligands in the field of coordination chemistry. Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). Some structures of oxime compounds forming by Schiff bases reaction have been reported (Bomfim et al., 2005; Fun et al., 2008). Here we report the synthesis and crystal structure of the title compound (I), (Fig. 1).

The dihedral angle in (I) formed by the aniline and nitrobenzene rings is 44.23 (2)°. The molecular packing (Fig. 2) is stabilized by aromatic π···π interactions between the aniline and the nitrobenzene rings of neighbouring molecules, with a Cg1···Cg2iii separation of 3.825 (3) Å and a Cg1···Cg2iv separation of 3.870 (4) Å (Fig. 2; Cg1 and Cg2 are the centroids of the C3—C8 benzene and the C10–C15 benzene rings, respectively). Additionally, intermolecular O–H···N and C—H···O interactions in the structure were observed (Table 1 and Fig. 2).

The title compound is not chiral, but space group is p212121. This is because the title compound is rigid in the crystal, and adopts a chiral helicalx-type structure.

Experimental

4-Aminophenylethanone oxime was prepared by 1-(4-aminophenyl)ethanone, hydroxylamine sulfate and sodium acetate (Rafiq et al., 2008; Duan et al., 2007; Dong et al., 2008). To an ethanol solution (5 ml) of 4-aminophenylethanone oxime (150.2 mg, 1.00 mmol) was added dropwise an ethanol solution (5 ml) of 4-nitrobenzaldehyde (152.5 mg, 1.01 mmol). The mixture solution was stirred at 328–333 K for 5 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 367.5 mg (Yield, 82.6%) of solid; m.p. 484–485 K. Pale-yellow block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of ethyl acetate of (I) at room temperature for about one month. Anal. Calcd. for C15H13N3O3: C, 62.6; H, 4.63; N, 14.83 Found: C, 62.1; H, 4.59; N, 14.87.

Refinement

Atom H1 of the hydroxy group was found in a difference Fourier map and was refined with an O—H distance restraint of 0.95 (4) Å. The other H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecule structure of the title compound with atom numbering. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Fig. 2.
π···π, O—H···N and C—H···O interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry code: ...

Crystal data

C15H13N3O3F(000) = 592
Mr = 283.28Dx = 1.401 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1209 reflections
a = 7.375 (1) Åθ = 2.2–21.4°
b = 10.770 (2) ŵ = 0.10 mm1
c = 16.906 (2) ÅT = 298 K
V = 1342.8 (3) Å3Block-like, pale-yellow
Z = 40.50 × 0.35 × 0.10 mm

Data collection

Bruker SMART1000 CCD area-detector diffractometer1700 independent reflections
Radiation source: fine-focus sealed tube899 reflections with I > 2σ(I)
graphiteRint = 0.068
phi and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.952, Tmax = 0.990k = −13→13
7656 measured reflectionsl = −14→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0438P)2 + 0.0834P] where P = (Fo2 + 2Fc2)/3
1700 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.7084 (5)0.5375 (3)0.90756 (16)0.0478 (9)
N20.6140 (4)0.6960 (3)0.54920 (16)0.0389 (8)
N30.6281 (5)0.8627 (4)0.1831 (2)0.0601 (11)
O10.7150 (4)0.5267 (3)0.99032 (15)0.0636 (10)
H10.784 (6)0.454 (4)0.999 (3)0.100 (18)*
O20.6733 (5)0.9635 (3)0.15589 (17)0.0830 (11)
O30.5894 (6)0.7723 (3)0.14311 (17)0.0939 (13)
C10.5534 (7)0.7318 (4)0.9402 (2)0.0755 (15)
H1A0.58210.70900.99360.113*
H1B0.42410.73520.93390.113*
H1C0.60460.81170.92860.113*
C20.6304 (5)0.6371 (3)0.8846 (2)0.0384 (9)
C30.6214 (5)0.6542 (3)0.79802 (19)0.0319 (9)
C40.5531 (5)0.7611 (3)0.76460 (19)0.0394 (10)
H40.50840.82350.79720.047*
C50.5498 (5)0.7776 (3)0.6832 (2)0.0391 (10)
H50.50410.85100.66210.047*
C60.6133 (5)0.6869 (3)0.63323 (19)0.0328 (9)
C70.6787 (5)0.5777 (3)0.6663 (2)0.0381 (10)
H70.72010.51450.63340.046*
C80.6832 (5)0.5618 (3)0.7469 (2)0.0377 (9)
H80.72830.48800.76770.045*
C90.6249 (5)0.8019 (3)0.5170 (2)0.0402 (10)
H90.63640.87190.54890.048*
C100.6198 (5)0.8171 (3)0.43071 (19)0.0375 (10)
C110.6747 (5)0.9298 (3)0.3977 (2)0.0454 (11)
H110.70980.99480.43050.055*
C120.6773 (5)0.9453 (4)0.3167 (2)0.0466 (11)
H120.71561.01980.29440.056*
C130.6223 (5)0.8484 (4)0.2699 (2)0.0407 (10)
C140.5622 (5)0.7378 (3)0.3007 (2)0.0436 (11)
H140.52230.67430.26780.052*
C150.5627 (5)0.7232 (3)0.3816 (2)0.0405 (10)
H150.52370.64850.40340.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.069 (3)0.0466 (19)0.0279 (16)0.0068 (19)−0.0017 (17)0.0065 (15)
N20.043 (2)0.0377 (17)0.0363 (18)0.0016 (17)0.0005 (16)0.0021 (14)
N30.060 (3)0.080 (3)0.040 (2)0.017 (3)0.003 (2)0.013 (2)
O10.097 (3)0.0590 (19)0.0348 (15)0.014 (2)−0.0051 (16)0.0064 (14)
O20.100 (3)0.094 (2)0.0551 (19)0.010 (2)0.0065 (19)0.0338 (19)
O30.139 (4)0.100 (3)0.0422 (19)0.005 (3)−0.002 (2)−0.0081 (19)
C10.111 (4)0.072 (3)0.044 (2)0.031 (3)−0.003 (3)−0.011 (2)
C20.043 (3)0.034 (2)0.038 (2)−0.007 (2)0.0012 (18)−0.0009 (17)
C30.030 (2)0.034 (2)0.032 (2)−0.0030 (19)−0.0013 (17)0.0024 (16)
C40.042 (3)0.038 (2)0.038 (2)0.002 (2)0.0005 (18)−0.0033 (18)
C50.042 (3)0.033 (2)0.043 (2)0.0047 (19)−0.0014 (18)0.0071 (17)
C60.034 (2)0.037 (2)0.027 (2)−0.0009 (19)0.0004 (17)0.0015 (15)
C70.042 (3)0.035 (2)0.037 (2)−0.001 (2)0.0061 (19)−0.0006 (17)
C80.043 (3)0.0325 (19)0.037 (2)0.002 (2)−0.0015 (18)0.0024 (17)
C90.044 (3)0.041 (2)0.035 (2)0.000 (2)−0.0051 (19)−0.0031 (17)
C100.038 (3)0.039 (2)0.035 (2)0.0029 (19)0.0034 (19)−0.0022 (17)
C110.045 (3)0.042 (2)0.049 (2)0.002 (2)−0.005 (2)0.0022 (18)
C120.048 (3)0.042 (2)0.050 (3)0.004 (2)0.000 (2)0.0166 (19)
C130.039 (3)0.051 (2)0.032 (2)0.013 (2)0.0026 (18)0.0079 (18)
C140.043 (3)0.044 (2)0.044 (2)0.008 (2)−0.0051 (18)−0.0009 (19)
C150.039 (3)0.042 (2)0.041 (2)0.003 (2)0.0038 (18)0.0064 (18)

Geometric parameters (Å, °)

N1—C21.278 (4)C5—H50.9300
N1—O11.405 (4)C6—C71.388 (4)
N2—C91.266 (4)C7—C81.375 (5)
N2—C61.424 (4)C7—H70.9300
N3—O31.219 (4)C8—H80.9300
N3—O21.225 (4)C9—C101.469 (5)
N3—C131.476 (5)C9—H90.9300
O1—H10.95 (4)C10—C151.375 (5)
C1—C21.498 (5)C10—C111.396 (5)
C1—H1A0.9600C11—C121.378 (5)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C131.371 (5)
C2—C31.477 (4)C12—H120.9300
C3—C41.378 (4)C13—C141.374 (5)
C3—C81.395 (4)C14—C151.376 (4)
C4—C51.388 (4)C14—H140.9300
C4—H40.9300C15—H150.9300
C5—C61.374 (5)
C2—N1—O1112.8 (3)C8—C7—C6120.9 (3)
C9—N2—C6119.4 (3)C8—C7—H7119.6
O3—N3—O2124.2 (4)C6—C7—H7119.6
O3—N3—C13117.5 (4)C7—C8—C3121.1 (3)
O2—N3—C13118.3 (4)C7—C8—H8119.4
N1—O1—H1104 (3)C3—C8—H8119.4
C2—C1—H1A109.5N2—C9—C10121.7 (3)
C2—C1—H1B109.5N2—C9—H9119.1
H1A—C1—H1B109.5C10—C9—H9119.1
C2—C1—H1C109.5C15—C10—C11119.1 (3)
H1A—C1—H1C109.5C15—C10—C9121.7 (3)
H1B—C1—H1C109.5C11—C10—C9119.2 (3)
N1—C2—C3115.2 (3)C12—C11—C10120.4 (4)
N1—C2—C1123.5 (3)C12—C11—H11119.8
C3—C2—C1121.3 (3)C10—C11—H11119.8
C4—C3—C8117.5 (3)C13—C12—C11118.5 (4)
C4—C3—C2121.8 (3)C13—C12—H12120.8
C8—C3—C2120.7 (3)C11—C12—H12120.8
C3—C4—C5121.3 (3)C12—C13—C14122.4 (3)
C3—C4—H4119.3C12—C13—N3119.1 (4)
C5—C4—H4119.3C14—C13—N3118.5 (4)
C6—C5—C4120.8 (3)C13—C14—C15118.4 (4)
C6—C5—H5119.6C13—C14—H14120.8
C4—C5—H5119.6C15—C14—H14120.8
C5—C6—C7118.3 (3)C10—C15—C14121.1 (4)
C5—C6—N2124.4 (3)C10—C15—H15119.5
C7—C6—N2117.3 (3)C14—C15—H15119.5
O1—N1—C2—C3179.3 (3)C6—N2—C9—C10−177.8 (3)
O1—N1—C2—C1−0.3 (6)N2—C9—C10—C1515.0 (6)
N1—C2—C3—C4−175.2 (3)N2—C9—C10—C11−164.9 (4)
C1—C2—C3—C44.4 (6)C15—C10—C11—C12−2.1 (6)
N1—C2—C3—C84.4 (5)C9—C10—C11—C12177.8 (3)
C1—C2—C3—C8−175.9 (4)C10—C11—C12—C131.0 (6)
C8—C3—C4—C5−1.5 (5)C11—C12—C13—C141.0 (6)
C2—C3—C4—C5178.2 (4)C11—C12—C13—N3−178.7 (4)
C3—C4—C5—C60.6 (6)O3—N3—C13—C12175.4 (4)
C4—C5—C6—C70.8 (6)O2—N3—C13—C12−3.7 (6)
C4—C5—C6—N2179.7 (3)O3—N3—C13—C14−4.3 (6)
C9—N2—C6—C528.3 (6)O2—N3—C13—C14176.5 (4)
C9—N2—C6—C7−152.8 (4)C12—C13—C14—C15−1.9 (6)
C5—C6—C7—C8−1.3 (6)N3—C13—C14—C15177.8 (4)
N2—C6—C7—C8179.8 (3)C11—C10—C15—C141.3 (6)
C6—C7—C8—C30.4 (6)C9—C10—C15—C14−178.6 (3)
C4—C3—C8—C71.0 (6)C13—C14—C15—C100.7 (6)
C2—C3—C8—C7−178.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.95 (4)1.97 (4)2.887 (4)162 (4)
C1—H1A···O3ii0.962.623.469 (5)148

Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2109).

References

  • Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56. [PubMed]
  • Dong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008). Acta Cryst. E64, o1917. [PMC free article] [PubMed]
  • Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.
  • Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [PMC free article] [PubMed]
  • Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J.15, 955–962. [PubMed]
  • Rafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography