PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2531.
Published online 2009 September 26. doi:  10.1107/S1600536809038112
PMCID: PMC2970304

1,8-Bis[3-(triethoxy­silyl)prop­yl]-1,8-diazo­niatricyclo­[9.3.1.14,8]hexa­decane diiodide

Abstract

The organic mol­ecule of title compound, C30H66N4O6Si2 2+·2I, is located around a centre of symmetry. The structure exhibits disorder of the trieth­oxy groups with the ratios 0.78 (1)/0.22 (1), 0.67 (1)/0.33 (1) and 0.58 (1)/0.42 (1).

Related literature

For Si—O bond distances, see: Klapdohr et al. (2000 [triangle]); Bedford et al. (2001 [triangle]); Aksin et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2531-scheme1.jpg

Experimental

Crystal data

  • C30H66N4O6Si2 2+·2I
  • M r = 888.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2531-efi1.jpg
  • a = 15.0484 (2) Å
  • b = 8.4229 (1) Å
  • c = 16.5921 (3) Å
  • β = 101.808 (1)°
  • V = 2058.57 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.63 mm−1
  • T = 115 K
  • 0.21 × 0.21 × 0.15 mm

Data collection

  • Nonius Kappa CCD diffractometer
  • Absorption correction: none
  • 8944 measured reflections
  • 4686 independent reflections
  • 3900 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.076
  • S = 1.03
  • 4686 reflections
  • 208 parameters
  • 17 restraints
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038112/rk2168sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038112/rk2168Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the French National Research Agency (project No. NT05 3 41602 mesoporelect), the Centre National de la Recherche Scientifique (CNRS), the Ministère de l’Enseignement Supérieur de la Recherche and the Conseil Régional de Bourgogne.

supplementary crystallographic information

Comment

The molecule of title compound, C30H66N4O6Si2.2(I), placed around of centre of symmetry. The Si—O bond distances (Si1—O1 = 1.615 (2), Si1—O2B = 1.629 (7), Si1—O2A = 1.633 (4), Si1—O3A = 1.635 (5), Si1—O3B = 1.644 (6) Å) are in good agreement with those observed in literature - Klapdohr et al., (2000); Bedford et al., (2001); Aksin et al., (2006) - Si—O = 1.611 (10)–1.644 (12)Å. The molecular structure shows a trans–conformation for the two methylenic bridge (Fig. 1).

Experimental

The 59.5 g of iodopropyltriethoxysilane (2 eq., 0.18 mol) were added to a solution of formaldehyde–cyclam (purchased from CheMatech) (20.07 g, 0.09 mol) in freshly distilled acetonitrile (180 ml) under N2. The white precipitate formed after 3 h was filtered, rinsed with acetonitrile (50 ml). The resulting solid was dried under vacuum. The title compound, I, was obtained as a white solid (m = 42.74 g, 46.5 mmol, yield = 51.6%). No trace of cis–disubstituted macrocycle was detected, indicating a strong selectivity for the trans–disubstitution. Crystals of I suitable for single–crystal X–ray diffraction were selected directly from the sample.

13C [1H] NMR (75 MHz, CDCl3, 300 K): (CH2) 7.2, 15.2, (CH3) 18.7, (CH2) 19.6, 46.8, 46.9, 51.3, (O–CH2) 58.4, (CH2) 59.2, 60.8, 77.0. MALDI–TOF: m/z = 635.02 [M+].

Refinement

All H atoms were placed at calculated position using a riding model with C—H = 0.98Å (methyl) or 0.99Å (methylene) with Uiso(H) = 1.2Ueq(CH2) or Uiso(H) = 1.5Ueq(CH3).

Two of the triethoxy groups and one ethane group are disordered over two positions. The geometric parameters of three disordered components in each groups were restrained by using SADI restraints and using EADP constraints (Sheldrick, 2008). In the final stages of refinement, the statistical fractions of the major and minor disordered components were held fixed to the nearest rounded values of 0.78/0.22, 0.67/0.33 and 0.58/0.42 for respectively each disordered group. Similar Uij constraints were applied within the disordered parts to maintain a reasonable model. However, these disordered parts of the molecule display rather large ellipsoids with respect to the central core resulting in an Alert C on a Large Non–Solvent H or C Ueq(max)/Ueq(min) ratio.

Figures

Fig. 1.
Molecular view of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. Only major molecular moieties for disordered parts are shown. Symmetry codes: (i) -x+1, -y, -z.

Crystal data

C30H66N4O6Si22+·2IF(000) = 912
Mr = 888.85Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4978 reflections
a = 15.0484 (2) Åθ = 1.0–27.5°
b = 8.4229 (1) ŵ = 1.63 mm1
c = 16.5921 (3) ÅT = 115 K
β = 101.808 (1)°Prism, colourless
V = 2058.57 (5) Å30.21 × 0.21 × 0.15 mm
Z = 2

Data collection

Nonius Kappa CCD diffractometer3900 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.030
graphiteθmax = 27.5°, θmin = 2.9°
Detector resolution: 9 pixels mm-1h = −19→19
[var phi] and ω scansk = −10→10
8944 measured reflectionsl = −21→21
4686 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0349P)2 + 1.6474P] where P = (Fo2 + 2Fc2)/3
4686 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 0.80 e Å3
17 restraintsΔρmin = −0.84 e Å3
16 constraints

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.59893 (17)0.0563 (3)0.11258 (14)0.0219 (5)
H1A0.5638−0.03920.12150.026*
H1B0.64500.07410.16360.026*
C20.64831 (17)0.0206 (3)0.04340 (14)0.0231 (5)
H2A0.68040.11790.03180.028*
H2B0.6949−0.06160.06270.028*
C30.64235 (18)−0.0542 (3)−0.09955 (16)0.0275 (6)
H3A0.6837−0.1465−0.08730.033*
H3B0.67930.0417−0.10320.033*
C40.5753 (2)−0.0802 (3)−0.18030 (15)0.0289 (6)
H4A0.54140.0195−0.19620.035*
H4B0.6093−0.1057−0.22380.035*
C50.50826 (18)−0.2128 (3)−0.17557 (14)0.0244 (5)
H5A0.5400−0.3162−0.17340.029*
H5B0.4599−0.2113−0.22600.029*
C60.54212 (16)−0.1799 (3)−0.02599 (13)0.0192 (5)
H6A0.5175−0.17720.02500.023*
H6B0.5839−0.2715−0.02270.023*
C70.58228 (17)0.3514 (3)0.08780 (14)0.0214 (5)
H7A0.59700.34900.03230.026*
H7B0.53890.43960.08840.026*
C80.66860 (17)0.3891 (3)0.14980 (15)0.0232 (5)
H8A0.71750.31480.14280.028*
H8B0.65810.37740.20650.028*
C90.69656 (17)0.5607 (3)0.13546 (15)0.0241 (5)
H9A0.64830.63340.14570.029*
H9B0.70090.57260.07700.029*
Si10.80597 (5)0.62166 (9)0.20138 (5)0.02915 (17)
O10.81232 (14)0.5729 (2)0.29651 (11)0.0361 (5)
C11A0.8556 (3)0.4338 (5)0.3373 (2)0.0469 (7)0.78
H11A0.90280.39500.30840.056*0.78
H11B0.81030.34840.33660.056*0.78
C12A0.8981 (3)0.4762 (6)0.4245 (2)0.0469 (7)0.78
H12A0.92750.38210.45300.070*0.78
H12B0.85100.51430.45280.070*0.78
H12C0.94340.55980.42480.070*0.78
O2A0.8055 (5)0.8155 (4)0.1990 (3)0.0331 (13)0.67
C21A0.8750 (5)0.9184 (6)0.2443 (4)0.0513 (14)0.67
H21A0.93270.85920.26080.062*0.67
H21B0.85670.95770.29470.062*0.67
C22A0.8879 (5)1.0565 (6)0.1897 (4)0.0513 (14)0.67
H22A0.93631.12560.21900.077*0.67
H22B0.83121.11690.17540.077*0.67
H22C0.90451.01650.13930.077*0.67
O3A0.8982 (4)0.5450 (14)0.1800 (4)0.0372 (16)0.58
C31A0.9148 (5)0.5705 (8)0.0983 (4)0.0554 (10)0.58
H31A0.97620.61580.10200.066*0.58
H31B0.86990.64700.06830.066*0.58
C32A0.9074 (5)0.4163 (7)0.0524 (4)0.0554 (10)0.58
H32A0.92350.4327−0.00130.083*0.58
H32B0.84500.37670.04440.083*0.58
H32C0.94890.33860.08410.083*0.58
C11B0.8814 (9)0.5688 (15)0.3700 (7)0.0469 (7)0.22
H11C0.86310.63190.41430.056*0.22
H11D0.93940.61110.35960.056*0.22
C12B0.8901 (12)0.3975 (16)0.3927 (10)0.0469 (7)0.22
H12D0.93340.38550.44520.070*0.22
H12E0.91210.33840.34970.070*0.22
H12F0.83080.35600.39810.070*0.22
O2B0.8147 (12)0.8091 (9)0.1799 (8)0.0331 (13)0.33
C21B0.8921 (11)0.8929 (11)0.2268 (11)0.0513 (14)0.33
H21C0.94710.86570.20560.062*0.33
H21D0.90220.85990.28530.062*0.33
C22B0.8762 (11)1.0688 (11)0.2205 (8)0.0513 (14)0.33
H22D0.93081.12450.24900.077*0.33
H22E0.82501.09650.24590.077*0.33
H22F0.86251.10020.16240.077*0.33
O3B0.8823 (7)0.521 (2)0.1642 (6)0.0372 (16)0.42
C31B0.8901 (7)0.4696 (11)0.0824 (5)0.0554 (10)0.42
H31C0.83500.40950.05680.066*0.42
H31D0.94310.39820.08660.066*0.42
C32B0.9010 (6)0.6094 (10)0.0298 (5)0.0554 (10)0.42
H32D0.90070.5734−0.02640.083*0.42
H32E0.95880.66250.05220.083*0.42
H32F0.85090.68390.02910.083*0.42
N10.53482 (13)0.1971 (2)0.10041 (11)0.0190 (4)
N20.59027 (13)−0.0345 (3)−0.03396 (11)0.0205 (4)
I10.660451 (12)0.40929 (2)−0.121474 (10)0.03066 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0257 (13)0.0179 (12)0.0204 (11)0.0039 (10)0.0006 (9)0.0014 (9)
C20.0217 (12)0.0210 (13)0.0261 (12)0.0012 (10)0.0039 (10)−0.0022 (10)
C30.0302 (14)0.0256 (14)0.0310 (13)−0.0024 (11)0.0161 (11)−0.0011 (11)
C40.0406 (16)0.0270 (14)0.0229 (12)−0.0020 (12)0.0151 (11)0.0014 (10)
C50.0343 (14)0.0242 (13)0.0164 (11)0.0024 (11)0.0094 (10)−0.0012 (10)
C60.0202 (12)0.0190 (12)0.0178 (10)0.0016 (9)0.0027 (9)0.0005 (9)
C70.0270 (13)0.0158 (11)0.0208 (11)−0.0001 (10)0.0035 (9)0.0001 (9)
C80.0238 (13)0.0221 (13)0.0232 (12)0.0016 (10)0.0038 (10)−0.0015 (10)
C90.0248 (13)0.0246 (13)0.0233 (12)−0.0007 (10)0.0062 (10)−0.0002 (10)
Si10.0226 (4)0.0339 (4)0.0295 (4)−0.0054 (3)0.0018 (3)0.0045 (3)
O10.0393 (12)0.0396 (12)0.0270 (10)0.0019 (9)0.0011 (8)0.0013 (8)
C11A0.0436 (16)0.056 (2)0.0373 (16)0.0062 (15)−0.0013 (13)0.0084 (13)
C12A0.0436 (16)0.056 (2)0.0373 (16)0.0062 (15)−0.0013 (13)0.0084 (13)
O2A0.036 (2)0.0343 (12)0.026 (3)−0.0153 (11)−0.001 (2)0.0030 (13)
C21A0.044 (3)0.0352 (16)0.066 (3)−0.0109 (14)−0.009 (2)−0.0051 (17)
C22A0.044 (3)0.0352 (16)0.066 (3)−0.0109 (14)−0.009 (2)−0.0051 (17)
O3A0.013 (2)0.066 (4)0.030 (3)−0.004 (3)−0.002 (2)0.002 (2)
C31A0.047 (2)0.076 (3)0.050 (2)−0.005 (2)0.0256 (18)−0.001 (2)
C32A0.047 (2)0.076 (3)0.050 (2)−0.005 (2)0.0256 (18)−0.001 (2)
C11B0.0436 (16)0.056 (2)0.0373 (16)0.0062 (15)−0.0013 (13)0.0084 (13)
C12B0.0436 (16)0.056 (2)0.0373 (16)0.0062 (15)−0.0013 (13)0.0084 (13)
O2B0.036 (2)0.0343 (12)0.026 (3)−0.0153 (11)−0.001 (2)0.0030 (13)
C21B0.044 (3)0.0352 (16)0.066 (3)−0.0109 (14)−0.009 (2)−0.0051 (17)
C22B0.044 (3)0.0352 (16)0.066 (3)−0.0109 (14)−0.009 (2)−0.0051 (17)
O3B0.013 (2)0.066 (4)0.030 (3)−0.004 (3)−0.002 (2)0.002 (2)
C31B0.047 (2)0.076 (3)0.050 (2)−0.005 (2)0.0256 (18)−0.001 (2)
C32B0.047 (2)0.076 (3)0.050 (2)−0.005 (2)0.0256 (18)−0.001 (2)
N10.0221 (10)0.0184 (10)0.0164 (9)0.0012 (8)0.0039 (8)0.0008 (8)
N20.0217 (11)0.0202 (10)0.0200 (9)−0.0016 (8)0.0051 (8)−0.0024 (8)
I10.03902 (12)0.02923 (11)0.02399 (10)0.00690 (8)0.00707 (7)0.00048 (7)

Geometric parameters (Å, °)

C1—N11.516 (3)C11A—H11B0.9900
C1—C21.520 (3)C12A—H12A0.9800
C1—H1A0.9900C12A—H12B0.9800
C1—H1B0.9900C12A—H12C0.9800
C2—N21.472 (3)O2A—C21A1.446 (5)
C2—H2A0.9900C21A—C22A1.510 (6)
C2—H2B0.9900C21A—H21A0.9900
C3—N21.475 (3)C21A—H21B0.9900
C3—C41.519 (4)C22A—H22A0.9800
C3—H3A0.9900C22A—H22B0.9800
C3—H3B0.9900C22A—H22C0.9800
C4—C51.518 (4)O3A—C31A1.444 (7)
C4—H4A0.9900C31A—C32A1.498 (6)
C4—H4B0.9900C31A—H31A0.9900
C5—N1i1.524 (3)C31A—H31B0.9900
C5—H5A0.9900C32A—H32A0.9800
C5—H5B0.9900C32A—H32B0.9800
C6—N21.443 (3)C32A—H32C0.9800
C6—N1i1.517 (3)C11B—C12B1.490 (8)
C6—H6A0.9900C11B—H11C0.9900
C6—H6B0.9900C11B—H11D0.9900
C7—C81.516 (3)C12B—H12D0.9800
C7—N11.518 (3)C12B—H12E0.9800
C7—H7A0.9900C12B—H12F0.9800
C7—H7B0.9900O2B—C21B1.446 (7)
C8—C91.538 (3)C21B—C22B1.501 (8)
C8—H8A0.9900C21B—H21C0.9900
C8—H8B0.9900C21B—H21D0.9900
C9—Si11.853 (3)C22B—H22D0.9800
C9—H9A0.9900C22B—H22E0.9800
C9—H9B0.9900C22B—H22F0.9800
Si1—O11.6148 (19)O3B—C31B1.452 (7)
Si1—O2B1.629 (7)C31B—C32B1.495 (7)
Si1—O2A1.633 (4)C31B—H31C0.9900
Si1—O3A1.635 (5)C31B—H31D0.9900
Si1—O3B1.644 (6)C32B—H32D0.9800
O1—C11B1.431 (7)C32B—H32E0.9800
O1—C11A1.441 (4)C32B—H32F0.9800
C11A—C12A1.500 (5)N1—C6i1.517 (3)
C11A—H11A0.9900N1—C5i1.524 (3)
N1—C1—C2116.77 (19)H12A—C12A—H12B109.5
N1—C1—H1A108.1C11A—C12A—H12C109.5
C2—C1—H1A108.1H12A—C12A—H12C109.5
N1—C1—H1B108.1H12B—C12A—H12C109.5
C2—C1—H1B108.1C21A—O2A—Si1126.0 (5)
H1A—C1—H1B107.3O2A—C21A—C22A108.5 (5)
N2—C2—C1115.2 (2)O2A—C21A—H21A110.0
N2—C2—H2A108.5C22A—C21A—H21A110.0
C1—C2—H2A108.5O2A—C21A—H21B110.0
N2—C2—H2B108.5C22A—C21A—H21B110.0
C1—C2—H2B108.5H21A—C21A—H21B108.4
H2A—C2—H2B107.5C21A—C22A—H22A109.5
N2—C3—C4108.1 (2)C21A—C22A—H22B109.5
N2—C3—H3A110.1H22A—C22A—H22B109.5
C4—C3—H3A110.1C21A—C22A—H22C109.5
N2—C3—H3B110.1H22A—C22A—H22C109.5
C4—C3—H3B110.1H22B—C22A—H22C109.5
H3A—C3—H3B108.4C31A—O3A—Si1117.6 (6)
C5—C4—C3112.9 (2)O3A—C31A—C32A109.8 (6)
C5—C4—H4A109.0O3A—C31A—H31A109.7
C3—C4—H4A109.0C32A—C31A—H31A109.7
C5—C4—H4B109.0O3A—C31A—H31B109.7
C3—C4—H4B109.0C32A—C31A—H31B109.7
H4A—C4—H4B107.8H31A—C31A—H31B108.2
C4—C5—N1i112.17 (19)C31A—C32A—H32A109.5
C4—C5—H5A109.2C31A—C32A—H32B109.5
N1i—C5—H5A109.2H32A—C32A—H32B109.5
C4—C5—H5B109.2C31A—C32A—H32C109.5
N1i—C5—H5B109.2H32A—C32A—H32C109.5
H5A—C5—H5B107.9H32B—C32A—H32C109.5
N2—C6—N1i108.71 (17)O1—C11B—C12B104.5 (9)
N2—C6—H6A109.9O1—C11B—H11C110.9
N1i—C6—H6A109.9C12B—C11B—H11C110.9
N2—C6—H6B109.9O1—C11B—H11D110.9
N1i—C6—H6B109.9C12B—C11B—H11D110.9
H6A—C6—H6B108.3H11C—C11B—H11D108.9
C8—C7—N1116.57 (19)C11B—C12B—H12D109.5
C8—C7—H7A108.1C11B—C12B—H12E109.5
N1—C7—H7A108.1H12D—C12B—H12E109.5
C8—C7—H7B108.1C11B—C12B—H12F109.5
N1—C7—H7B108.1H12D—C12B—H12F109.5
H7A—C7—H7B107.3H12E—C12B—H12F109.5
C7—C8—C9108.4 (2)C21B—O2B—Si1116.6 (9)
C7—C8—H8A110.0O2B—C21B—C22B110.2 (11)
C9—C8—H8A110.0O2B—C21B—H21C109.6
C7—C8—H8B110.0C22B—C21B—H21C109.6
C9—C8—H8B110.0O2B—C21B—H21D109.6
H8A—C8—H8B108.4C22B—C21B—H21D109.6
C8—C9—Si1114.03 (18)H21C—C21B—H21D108.1
C8—C9—H9A108.7C21B—C22B—H22D109.5
Si1—C9—H9A108.7C21B—C22B—H22E109.5
C8—C9—H9B108.7H22D—C22B—H22E109.5
Si1—C9—H9B108.7C21B—C22B—H22F109.5
H9A—C9—H9B107.6H22D—C22B—H22F109.5
O1—Si1—O2B117.9 (5)H22E—C22B—H22F109.5
O1—Si1—O2A106.10 (19)C31B—O3B—Si1134.5 (8)
O1—Si1—O3A103.2 (3)O3B—C31B—C32B110.4 (11)
O2B—Si1—O3A103.0 (8)O3B—C31B—H31C109.6
O2A—Si1—O3A112.9 (5)C32B—C31B—H31C109.6
O1—Si1—O3B109.3 (5)O3B—C31B—H31D109.6
O2B—Si1—O3B108.8 (9)C32B—C31B—H31D109.6
O2A—Si1—O3B120.3 (7)H31C—C31B—H31D108.1
O1—Si1—C9111.97 (11)C31B—C32B—H32D109.5
O2B—Si1—C9103.9 (6)C31B—C32B—H32E109.5
O2A—Si1—C9105.3 (3)H32D—C32B—H32E109.5
O3A—Si1—C9117.0 (3)C31B—C32B—H32F109.5
O3B—Si1—C9103.9 (4)H32D—C32B—H32F109.5
C11B—O1—C11A53.1 (5)H32E—C32B—H32F109.5
C11B—O1—Si1136.6 (7)C1—N1—C6i113.09 (17)
C11A—O1—Si1126.6 (2)C1—N1—C7112.57 (18)
O1—C11A—C12A108.8 (3)C6i—N1—C7105.79 (17)
O1—C11A—H11A109.9C1—N1—C5i108.91 (17)
C12A—C11A—H11A109.9C6i—N1—C5i107.02 (17)
O1—C11A—H11B109.9C7—N1—C5i109.24 (18)
C12A—C11A—H11B109.9C6—N2—C2114.02 (18)
H11A—C11A—H11B108.3C6—N2—C3108.95 (19)
C11A—C12A—H12A109.5C2—N2—C3111.64 (19)
C11A—C12A—H12B109.5
N1—C1—C2—N2−67.5 (3)O2A—Si1—O3A—C31A−64.5 (8)
N2—C3—C4—C5−52.3 (3)O3B—Si1—O3A—C31A62 (4)
C3—C4—C5—N1i48.6 (3)C9—Si1—O3A—C31A57.9 (9)
N1—C7—C8—C9−170.30 (19)Si1—O3A—C31A—C32A−112.4 (8)
C7—C8—C9—Si1−175.74 (16)C11A—O1—C11B—C12B−9.4 (8)
C8—C9—Si1—O1−46.8 (2)Si1—O1—C11B—C12B−116.4 (10)
C8—C9—Si1—O2B−175.2 (6)O1—Si1—O2B—C21B51.5 (14)
C8—C9—Si1—O2A−161.7 (2)O2A—Si1—O2B—C21B79 (4)
C8—C9—Si1—O3A72.0 (5)O3A—Si1—O2B—C21B−61.4 (13)
C8—C9—Si1—O3B71.0 (6)O3B—Si1—O2B—C21B−73.6 (13)
O2B—Si1—O1—C11B−70.0 (11)C9—Si1—O2B—C21B176.1 (11)
O2A—Si1—O1—C11B−76.2 (9)Si1—O2B—C21B—C22B−162.0 (13)
O3A—Si1—O1—C11B42.7 (9)O1—Si1—O3B—C31B154.0 (16)
O3B—Si1—O1—C11B54.8 (10)O2B—Si1—O3B—C31B−76.0 (19)
C9—Si1—O1—C11B169.4 (8)O2A—Si1—O3B—C31B−83.0 (18)
O2B—Si1—O1—C11A−142.4 (8)O3A—Si1—O3B—C31B−142 (6)
O2A—Si1—O1—C11A−148.7 (4)C9—Si1—O3B—C31B34.3 (19)
O3A—Si1—O1—C11A−29.7 (5)Si1—O3B—C31B—C32B67.1 (19)
O3B—Si1—O1—C11A−17.6 (7)C2—C1—N1—C6i60.8 (3)
C9—Si1—O1—C11A97.0 (3)C2—C1—N1—C7−59.0 (3)
C11B—O1—C11A—C12A19.5 (9)C2—C1—N1—C5i179.6 (2)
Si1—O1—C11A—C12A144.5 (3)C8—C7—N1—C1−49.9 (3)
O1—Si1—O2A—C21A58.1 (6)C8—C7—N1—C6i−173.89 (19)
O2B—Si1—O2A—C21A−97 (4)C8—C7—N1—C5i71.2 (3)
O3A—Si1—O2A—C21A−54.2 (6)N1i—C6—N2—C2162.99 (18)
O3B—Si1—O2A—C21A−66.3 (7)N1i—C6—N2—C3−71.6 (2)
C9—Si1—O2A—C21A177.0 (5)C1—C2—N2—C6−60.5 (3)
Si1—O2A—C21A—C22A141.1 (5)C1—C2—N2—C3175.5 (2)
O1—Si1—O3A—C31A−178.7 (7)C4—C3—N2—C663.8 (3)
O2B—Si1—O3A—C31A−55.4 (9)C4—C3—N2—C2−169.4 (2)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2168).

References

  • Aksin, O., Turkmen, H., Artok, L., Cetinkaya, B., Ni, C., Buyukgungor, O. & Ozkal, E. (2006). J. Organomet. Chem.691, 3027–3036.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bedford, R. B., Cazin, C. S. J., Hursthouse, M. B., Light, M. E., Pike, K. J. & Wimperis, S. (2001). J. Organomet. Chem.633, 173–181.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Klapdohr, S., Dotz, K. H., Assenmacher, W., Hoffbauer, W., Husing, N., Nieger, M., Pfeiffer, J., Popall, M., Schubert, U. & Trimmel, G. (2000). Chem. Eur. J.6, 3006–3017. [PubMed]
  • Nonius, (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography