PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2540–o2541.
Published online 2009 September 26. doi:  10.1107/S1600536809037921
PMCID: PMC2970303

(E)-N′-(3-Benz­yloxy-4-methoxy­benzyl­idene)isonicotinohydrazide

Abstract

In the title compound, C21H19N3O3, the pyridine ring forms a dihedral angle of 15.25 (6)° with the benzene ring. The dihedral angle between the two benzene rings is 83.66 (7)°. The meth­oxy group is slightly twisted away from the attached ring [C—O—C—C = 7.5 (2)°]. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H(...)N and C—H(...)O hydrogen bonds. The structure is further stabilized by C—H(...)π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For applications of isoniazid derivatives, see: Janin (2007 [triangle]); Maccari et al. (2005 [triangle]); Slayden & Barry (2000 [triangle]). For the preparation, see: Lourenço et al. (2008 [triangle]). For the biological activity of Schiff bases, see: Kahwa et al. (1986 [triangle]). For related structures, see: Naveenkumar, Sadikun, Ibrahim, Goh & Fun (2009 [triangle]); Naveenkumar, Sadikun, Ibrahim, Yeap & Fun (2009 [triangle]); Shi (2005 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2540-scheme1.jpg

Experimental

Crystal data

  • C21H19N3O3
  • M r = 361.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2540-efi1.jpg
  • a = 18.3930 (6) Å
  • b = 11.5574 (4) Å
  • c = 8.3508 (3) Å
  • β = 93.436 (2)°
  • V = 1771.98 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.71 × 0.13 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.937, T max = 0.992
  • 27863 measured reflections
  • 6434 independent reflections
  • 3841 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.145
  • S = 1.06
  • 6433 reflections
  • 249 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037921/ci2917sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037921/ci2917Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research is supported by Universiti Sains Malaysia (USM) under the University Research Grant No. 1001/PFARMASI/815005. H-KF and W-SL thank USM for the Research University Golden Goose Grant No. 1001/PFIZIK/811012. W-SL also thanks the Malaysian government and USM for the award of the post of Assistant Research Officer under Research University Golden Goose Grant No. 1001/PFIZIK/811012. HSN is grateful for a USM fellowship for financial assistance.

supplementary crystallographic information

Comment

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of a current work of synthesis of (E)-N'-(substituted-benzylidene) isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound.

Bond lengths (Allen et al., 1987) and the angles of the title compound (Fig. 1) are within the normal range and are comparable to those observed for closely related structures (Naveenkumar, Sadikun, Ibrahim, Goh & Fun, 2009; Naveenkumar, Sadikun, Ibrahim, Yeap & Fun, 2009). The mean plane of pyridine (C1–C5/N1) ring forms a dihedral angle of 15.25 (6)° with the benzene (C8–C13) ring. The two benzene (C8–C13 and C15–C20) rings form a dihedral angle of 83.66 (7)° with each other.

In the crystal packing (Fig. 2), molecules are linked into a three-dimensional network by intermolecular N2—H1N2···N1, C9—H9A···O1 and C19—H19A···O3 hydrogen bonds. The crystal structure is further stabilized by C17—H17A···Cg1 interactions (Table 1; Cg1 is the centroid of the C8-C13 benzene ring).

Experimental

The isoniazid (INH) derivative was prepared following the procedure by literature (Lourenço et al., 2008). (E)—N'-(3-Benzyloxy-4-methoxybenzylidene)isonicotinohydrazide was prepared by reaction between the 3-benzyloxy-4-methoxy benzaldehyde (1.0 eq) with INH (1.0 eq) in ethanol/water (10 ml), initially dissolving the INH in water and adding the respective solution over a solution of the aldehyde in ethanol. After stirring for 1 to 3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue was purified by washing with cold ethyl alcohol and ethyl ether to afford the pure derivative. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of a dimethyl sulfoxide solution at room temperature.

Refinement

All carbon-bound H atoms were positioned geometrically [C–H = 0.93-0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. Atom H1N2 was located in a difference Fourier map and refined freely.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C21H19N3O3F(000) = 760
Mr = 361.39Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4601 reflections
a = 18.3930 (6) Åθ = 2.8–32.1°
b = 11.5574 (4) ŵ = 0.09 mm1
c = 8.3508 (3) ÅT = 100 K
β = 93.436 (2)°Needle, yellow
V = 1771.98 (11) Å30.71 × 0.13 × 0.09 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6434 independent reflections
Radiation source: fine-focus sealed tube3841 reflections with I > 2σ(I)
graphiteRint = 0.061
[var phi] and ω scansθmax = 32.6°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −26→27
Tmin = 0.937, Tmax = 0.992k = −15→17
27863 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0618P)2] where P = (Fo2 + 2Fc2)/3
6433 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.34254 (5)0.51645 (9)0.11366 (12)0.0270 (2)
O20.17576 (5)0.99561 (8)0.38579 (11)0.0206 (2)
O30.17536 (5)1.19805 (8)0.25594 (11)0.0221 (2)
N10.49029 (7)0.30387 (11)−0.27715 (14)0.0258 (3)
N20.38144 (6)0.66534 (10)−0.03723 (14)0.0205 (3)
N30.34440 (6)0.74619 (10)0.04977 (13)0.0205 (3)
C10.46166 (7)0.50212 (12)−0.22030 (17)0.0228 (3)
H1A0.46870.5799−0.24320.027*
C20.49753 (8)0.41733 (13)−0.30194 (17)0.0239 (3)
H2A0.52870.4409−0.37920.029*
C30.44347 (8)0.27391 (13)−0.16720 (19)0.0310 (4)
H3A0.43610.1955−0.14920.037*
C40.40545 (8)0.35211 (13)−0.07883 (18)0.0265 (3)
H4A0.37380.3263−0.00370.032*
C50.41511 (7)0.46942 (12)−0.10385 (15)0.0182 (3)
C60.37626 (7)0.55180 (12)0.00140 (16)0.0190 (3)
C70.33453 (7)0.84479 (12)−0.02067 (16)0.0192 (3)
H7A0.35280.8565−0.12090.023*
C80.29549 (7)0.93788 (12)0.05350 (16)0.0185 (3)
C90.29436 (7)1.04692 (12)−0.01554 (16)0.0205 (3)
H9A0.31981.0602−0.10680.025*
C100.25541 (7)1.13699 (12)0.05066 (16)0.0211 (3)
H10A0.25561.21020.00440.025*
C110.21677 (7)1.11759 (11)0.18421 (16)0.0182 (3)
C120.21699 (7)1.00623 (11)0.25633 (15)0.0173 (3)
C130.25588 (7)0.91782 (12)0.18985 (16)0.0186 (3)
H13A0.25590.84450.23560.022*
C140.16762 (8)0.88010 (12)0.44760 (18)0.0246 (3)
H14A0.21480.84920.48390.030*
H14B0.14660.82990.36410.030*
C150.11900 (7)0.88528 (11)0.58412 (17)0.0197 (3)
C160.14817 (8)0.90316 (12)0.73981 (18)0.0255 (3)
H16A0.19830.91110.75850.031*
C170.10355 (9)0.90916 (13)0.86672 (18)0.0312 (4)
H17A0.12360.92150.97020.037*
C180.02901 (9)0.89689 (13)0.83993 (19)0.0312 (4)
H18A−0.00110.90070.92540.037*
C19−0.00072 (8)0.87894 (13)0.6859 (2)0.0318 (4)
H19A−0.05080.87070.66770.038*
C200.04401 (8)0.87320 (13)0.55915 (18)0.0260 (3)
H20A0.02370.86110.45580.031*
C210.16494 (9)1.30698 (12)0.17427 (18)0.0280 (3)
H21A0.13211.35420.23100.042*
H21B0.14491.29360.06710.042*
H21C0.21091.34590.17030.042*
H1N20.4037 (9)0.6892 (16)−0.122 (2)0.046 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0320 (5)0.0276 (6)0.0229 (5)0.0005 (5)0.0133 (5)0.0027 (4)
O20.0252 (5)0.0174 (5)0.0203 (5)0.0004 (4)0.0108 (4)0.0016 (4)
O30.0297 (5)0.0164 (5)0.0210 (5)0.0043 (4)0.0079 (4)0.0011 (4)
N10.0284 (6)0.0237 (6)0.0258 (6)0.0024 (5)0.0045 (5)−0.0026 (5)
N20.0244 (6)0.0200 (6)0.0179 (6)0.0025 (5)0.0094 (5)−0.0010 (5)
N30.0211 (6)0.0210 (6)0.0201 (6)0.0020 (5)0.0076 (5)−0.0033 (5)
C10.0271 (7)0.0185 (7)0.0236 (7)0.0026 (6)0.0083 (6)0.0020 (6)
C20.0248 (7)0.0265 (8)0.0212 (7)0.0042 (6)0.0084 (6)0.0012 (6)
C30.0362 (8)0.0188 (7)0.0390 (9)−0.0011 (7)0.0123 (7)0.0000 (6)
C40.0271 (7)0.0220 (7)0.0315 (8)0.0000 (6)0.0113 (6)0.0032 (6)
C50.0181 (6)0.0211 (7)0.0156 (6)0.0020 (5)0.0036 (5)0.0004 (5)
C60.0187 (6)0.0204 (7)0.0183 (7)0.0007 (5)0.0038 (5)0.0006 (5)
C70.0183 (6)0.0223 (7)0.0178 (6)−0.0007 (5)0.0062 (5)−0.0009 (5)
C80.0171 (6)0.0206 (7)0.0180 (6)−0.0010 (5)0.0034 (5)−0.0020 (5)
C90.0217 (7)0.0224 (7)0.0180 (7)−0.0013 (6)0.0060 (5)0.0009 (5)
C100.0247 (7)0.0182 (7)0.0207 (7)−0.0007 (6)0.0034 (6)0.0023 (5)
C110.0200 (6)0.0174 (6)0.0175 (6)0.0003 (5)0.0027 (5)−0.0021 (5)
C120.0172 (6)0.0187 (6)0.0163 (6)−0.0020 (5)0.0049 (5)−0.0011 (5)
C130.0193 (6)0.0178 (6)0.0190 (7)−0.0001 (5)0.0043 (5)0.0011 (5)
C140.0287 (7)0.0166 (7)0.0301 (8)0.0018 (6)0.0139 (6)0.0041 (6)
C150.0236 (7)0.0142 (6)0.0221 (7)0.0016 (5)0.0084 (6)0.0016 (5)
C160.0274 (7)0.0196 (7)0.0294 (8)−0.0022 (6)−0.0005 (6)0.0015 (6)
C170.0507 (10)0.0242 (8)0.0188 (7)0.0000 (7)0.0031 (7)−0.0011 (6)
C180.0440 (9)0.0239 (8)0.0280 (8)0.0008 (7)0.0208 (7)0.0000 (6)
C190.0238 (7)0.0328 (9)0.0401 (10)−0.0015 (6)0.0126 (7)−0.0020 (7)
C200.0251 (7)0.0315 (8)0.0217 (7)0.0011 (6)0.0048 (6)−0.0015 (6)
C210.0405 (9)0.0181 (7)0.0260 (8)0.0074 (6)0.0074 (7)0.0032 (6)

Geometric parameters (Å, °)

O1—C61.2249 (16)C9—C101.3964 (19)
O2—C121.3628 (16)C9—H9A0.93
O2—C141.4423 (16)C10—C111.3763 (19)
O3—C111.3633 (16)C10—H10A0.93
O3—C211.4391 (16)C11—C121.4208 (18)
N1—C21.3354 (19)C12—C131.3826 (18)
N1—C31.3414 (19)C13—H13A0.93
N2—C61.3560 (18)C14—C151.492 (2)
N2—N31.3871 (16)C14—H14A0.97
N2—H1N20.885 (18)C14—H14B0.97
N3—C71.2902 (17)C15—C201.390 (2)
C1—C21.3836 (19)C15—C161.392 (2)
C1—C51.3861 (19)C16—C171.380 (2)
C1—H1A0.93C16—H16A0.93
C2—H2A0.93C17—C181.383 (2)
C3—C41.383 (2)C17—H17A0.93
C3—H3A0.93C18—C191.383 (2)
C4—C51.3849 (19)C18—H18A0.93
C4—H4A0.93C19—C201.380 (2)
C5—C61.5049 (19)C19—H19A0.93
C7—C81.4527 (19)C20—H20A0.93
C7—H7A0.93C21—H21A0.96
C8—C91.3855 (19)C21—H21B0.96
C8—C131.4072 (18)C21—H21C0.96
C12—O2—C14116.22 (10)O3—C11—C12114.78 (11)
C11—O3—C21116.78 (10)C10—C11—C12120.17 (12)
C2—N1—C3115.70 (13)O2—C12—C13125.30 (12)
C6—N2—N3118.92 (12)O2—C12—C11115.49 (11)
C6—N2—H1N2122.3 (12)C13—C12—C11119.18 (12)
N3—N2—H1N2118.4 (12)C12—C13—C8120.56 (12)
C7—N3—N2114.60 (11)C12—C13—H13A119.7
C2—C1—C5119.03 (13)C8—C13—H13A119.7
C2—C1—H1A120.5O2—C14—C15108.43 (11)
C5—C1—H1A120.5O2—C14—H14A110.0
N1—C2—C1124.35 (14)C15—C14—H14A110.0
N1—C2—H2A117.8O2—C14—H14B110.0
C1—C2—H2A117.8C15—C14—H14B110.0
N1—C3—C4124.23 (14)H14A—C14—H14B108.4
N1—C3—H3A117.9C20—C15—C16118.60 (13)
C4—C3—H3A117.9C20—C15—C14121.09 (13)
C3—C4—C5119.06 (14)C16—C15—C14120.30 (13)
C3—C4—H4A120.5C17—C16—C15120.72 (14)
C5—C4—H4A120.5C17—C16—H16A119.6
C4—C5—C1117.58 (13)C15—C16—H16A119.6
C4—C5—C6117.49 (12)C16—C17—C18119.99 (14)
C1—C5—C6124.89 (13)C16—C17—H17A120.0
O1—C6—N2123.42 (13)C18—C17—H17A120.0
O1—C6—C5121.06 (13)C19—C18—C17119.91 (15)
N2—C6—C5115.52 (12)C19—C18—H18A120.0
N3—C7—C8121.29 (12)C17—C18—H18A120.0
N3—C7—H7A119.4C20—C19—C18119.98 (14)
C8—C7—H7A119.4C20—C19—H19A120.0
C9—C8—C13119.41 (12)C18—C19—H19A120.0
C9—C8—C7119.45 (12)C19—C20—C15120.79 (14)
C13—C8—C7121.07 (12)C19—C20—H20A119.6
C8—C9—C10120.56 (13)C15—C20—H20A119.6
C8—C9—H9A119.7O3—C21—H21A109.5
C10—C9—H9A119.7O3—C21—H21B109.5
C11—C10—C9120.10 (13)H21A—C21—H21B109.5
C11—C10—H10A120.0O3—C21—H21C109.5
C9—C10—H10A120.0H21A—C21—H21C109.5
O3—C11—C10125.04 (12)H21B—C21—H21C109.5
C6—N2—N3—C7−160.87 (12)C9—C10—C11—O3−178.10 (12)
C3—N1—C2—C11.4 (2)C9—C10—C11—C120.70 (19)
C5—C1—C2—N10.4 (2)C14—O2—C12—C13−5.78 (18)
C2—N1—C3—C4−1.8 (2)C14—O2—C12—C11172.17 (11)
N1—C3—C4—C50.3 (2)O3—C11—C12—O20.27 (16)
C3—C4—C5—C11.5 (2)C10—C11—C12—O2−178.65 (11)
C3—C4—C5—C6−176.45 (12)O3—C11—C12—C13178.35 (11)
C2—C1—C5—C4−1.84 (19)C10—C11—C12—C13−0.56 (19)
C2—C1—C5—C6175.95 (12)O2—C12—C13—C8178.59 (12)
N3—N2—C6—O1−2.77 (19)C11—C12—C13—C80.71 (18)
N3—N2—C6—C5177.17 (10)C9—C8—C13—C12−0.98 (19)
C4—C5—C6—O16.12 (19)C7—C8—C13—C12−177.89 (12)
C1—C5—C6—O1−171.67 (13)C12—O2—C14—C15−178.00 (10)
C4—C5—C6—N2−173.82 (12)O2—C14—C15—C2089.96 (15)
C1—C5—C6—N28.39 (18)O2—C14—C15—C16−89.64 (15)
N2—N3—C7—C8178.85 (11)C20—C15—C16—C17−0.2 (2)
N3—C7—C8—C9171.47 (12)C14—C15—C16—C17179.39 (13)
N3—C7—C8—C13−11.63 (19)C15—C16—C17—C180.3 (2)
C13—C8—C9—C101.11 (19)C16—C17—C18—C19−0.2 (2)
C7—C8—C9—C10178.06 (12)C17—C18—C19—C200.1 (2)
C8—C9—C10—C11−0.98 (19)C18—C19—C20—C150.0 (2)
C21—O3—C11—C107.50 (19)C16—C15—C20—C190.1 (2)
C21—O3—C11—C12−171.35 (11)C14—C15—C20—C19−179.52 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.88 (2)2.54 (2)3.3122 (17)146 (1)
C9—H9A···O1ii0.932.553.3524 (17)144
C19—H19A···O3iii0.932.543.3960 (17)153
C17—H17A···Cg1iv0.932.933.6694 (17)137

Symmetry codes: (i) −x+1, y+1/2, −z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+2, −z+1; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2917).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Janin, Y. L. (2007). Bioorg. Med. Chem.15, 2479–2513. [PubMed]
  • Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  • Lourenço, M. C. da S., Ferreira, M. de L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A., Henriques, M. & das, G. M. O. (2008). Eur. J. Med. Chem.43, 1344–1347. [PubMed]
  • Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett.15, 2509–2513. [PubMed]
  • Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2235–o2236. [PMC free article] [PubMed]
  • Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, o1912. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, J. (2005). Acta Cryst. E61, o3933–o3934.
  • Slayden, R. A. & Barry, C. E. (2000). Microbes Infect.2, 659–669. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography