PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2486–o2487.
Published online 2009 September 19. doi:  10.1107/S1600536809036733
PMCID: PMC2970300

2,4,6,8-Tetra­kis(2-methoxy­phen­yl)-3,7-diaza­bicyclo­[3.3.1]nonan-9-one diethyl ether hemisolvate

Abstract

In the title compound, C35H36N2O5·0.5C4H10O, the asymmetric unit contains one bicyclo­[3.3.1]nonane mol­ecule and a half-occupancy diethyl ether solvent with the O atom lying on a crystallographic inversion center. Two intra­molecular N—H(...)O hydrogen bonds generate S(6) ring motifs. The bicyclo­[3.3.1]nonane ring system adopts a chair-boat conformation. In the crystal structure, the mol­ecules are linked by weak inter­molecular C—H(...)N hydro­gen bonds into chains along the b axis; additional stabilization is provide by C—H(...)π inter­actions.

Related literature

For applications of bicyclo­[3.3.1]nonane derivatives, see: Arias-Perez et al. (1997 [triangle]). For applications of N,N-diphenyl derivatives, see: Srikrishna & Vijayakumar (1998 [triangle]). For bicyclic systems with aryl groups, see: Vijayakumar et al. (2000 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2486-scheme1.jpg

Experimental

Crystal data

  • C35H36N2O5·0.5C4H10O
  • M r = 1203.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2486-efi1.jpg
  • a = 13.5607 (2) Å
  • b = 13.7640 (2) Å
  • c = 20.3227 (3) Å
  • β = 123.143 (1)°
  • V = 3176.10 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.36 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.971, T max = 0.980
  • 49818 measured reflections
  • 11431 independent reflections
  • 8831 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.144
  • S = 1.03
  • 11431 reflections
  • 426 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809036733/lh2903sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036733/lh2903Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship. VV is grateful to DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Bicyclo[3.3.1]nonane moieties are present in many biologically active molecules like alkaloids and drugs (Arias-Perez el al., 1997). Functionalized 3-azabicyclo[3.3.1]nonanes have been studied intensively because of their pharmaceutical use and these compounds find applications as an important class of organic compounds in the field of molecular recognition. The 1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones are local anaesthetics. Some of them have hypotensive activity. N,N-diphenyl derivatives are found to possess antiphogistic and anti-thrombic activities (Srikrishna & Vijayakumar, 1998). The synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives are of much interest due to their diverse biological activities, such as antibacterial, antifungal, antiarrhythmic, antiphologistic, antithrombic, calcium antagonistic, hypotensive and neuroleptic properties and also because of their presence in naturally occurring lupin alkaloids. The conformational analysis of 3,7-diazabicyclo[3.3.1]nonanes (bispidines) is of considerable interest both from the theoretical view point and due to their biological activity. In recent years the 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonanes constitutes an interesting case for study because of the presence of four aryl groups. If all the aryls are in equatorial orientations, molecular models indicate close proximity of the aryls in both rings in the bicyclic systems (Vijayakumar el al., 2000). If they are in the twin chair conformation, it causes severe non-bonded interactions between aryl groups in 2,8-positions and 4,6-positions. So in order to attain the stability, the system may exist in the twin chair conformations and the aryls may assume different orientations in order that the overall stability can be attained. Hence these systems constitute an interesting case for study.

In the title compound (Fig. 1), the asymmetric unit contains one bicyclo[3.3.1]nonane molecule and a half-occupied diethyl ether solvent with the oxygen atom of diethyl ether molecule lying on the crystallographic inversion center (1/2, 1/2, 0). The intramolecular N2—H2···O4 and N2—H2···O5 hydrogen bonds form six-membered rings with S(6) ring motifs (Bernstein et al., 1995). The bicyclo[3.3.1]nonane ring adopts a chair-boat conformation with puckering parameter Q = 0.6509 (12) Å, θ = 8.67 (11)°, [var phi] = 131.5 (7)° for one of the piperidine rings (N1/C7–C11) and Q = 0.7318 (12) Å, θ = 90.93 (9)°, [var phi] = 6.12 (10)° for the other piperidine ring (N2/C18/C8–C10/C25) (Cremer & Pople, 1975). The N atoms adopt a pyramidal configuration. The phenyl rings substituted at C7 (C1–C6) and C11 (C12–C17) positions are oriented with one another with an angle of 23.02 (6)° whereas the phenyl rings that substituted at C18 (C19–C24) and C25 (C26–C31) are oriented with one another at an angle of 55.08 (7)°. Two methoxyphenyl groups substituted at C7 and C11 are in equatorial orientations with torsion angles C6–C7–C8–C9 = -171.93 (9)° and C9–C10–C11–C12 = -175.76 (9)°. The other two methoxyphenyl groups substituted at C18 and C25 have torsion angles of C9–C8–C18–C19 = 132.02 (9)° and C9–C10–C25–C26 = -120.19 (9)°.

In the crystal structure, the molecules are linked by intermolecular C4—H4A···N2 hydongen bonds into one-dimensional chains along the b axis. The molecules are also stabilized by the C—H···π interactions.

Experimental

A mixture of acetone (0.68 ml), 2-methoxybenzaldehyde (5 g) and dry ammonium acetate (1.4 g) was taken in 1:4:2 molar ratio in ethanol and it were heated on water bath till the colour changes to reddish orange. The mixture was allowed to stand for 24 h resulting in the formation of a sticky substance. To that diethyl ether was added and warmed gently. The fine needle-shaped crystals were separated out from the reaction mixture upon slow evaporation of the solvent. The purity of the compound was checked by TLC. Yield: 53%. M.p. 507 K.

Refinement

N-bound hydrogen atoms were located from the difference Fourier map and refined riding on their parent atom with Uiso(H) = 1.2Ueq(N). The rest of the hydrogen atoms were positioned geometrically [C–H = 0.9300–0.9800 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating group model was used for the methyl groups excepting for those in the solvent molecule.

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 30% probability ellipsoids for non-H atoms. Atoms labelled with suffix B are generated by symmetry code (-x + 1, -y + 1, -z + 2). Intramolecular hydrogen bonds are shown in as dashed lines. ...
Fig. 2.
The crystal packing of title compound, showing the molecules linked along the b axis. The solvent molecules are omitted for clarity. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C35H36N2O5·0.5C4H10OF(000) = 1284
Mr = 1203.44Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9998 reflections
a = 13.5607 (2) Åθ = 2.3–32.3°
b = 13.7640 (2) ŵ = 0.08 mm1
c = 20.3227 (3) ÅT = 100 K
β = 123.143 (1)°Block, colourless
V = 3176.10 (8) Å30.36 × 0.26 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer11431 independent reflections
Radiation source: fine-focus sealed tube8831 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 32.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −20→19
Tmin = 0.971, Tmax = 0.980k = −20→18
49818 measured reflectionsl = −28→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0696P)2 + 1.0838P] where P = (Fo2 + 2Fc2)/3
11431 reflections(Δ/σ)max = 0.001
426 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.37715 (7)1.20002 (6)0.79917 (5)0.02045 (17)
O20.16165 (8)0.81583 (7)0.50351 (5)0.02487 (19)
O30.44172 (7)0.91411 (6)0.75132 (5)0.02168 (18)
O40.44782 (7)0.85185 (6)0.93266 (5)0.02092 (18)
O50.39565 (7)0.69167 (6)0.78054 (5)0.02172 (18)
N10.12334 (8)1.00157 (7)0.64982 (5)0.01379 (17)
H10.07701.04440.61480.017*
N20.23043 (8)0.81126 (6)0.79232 (5)0.01415 (17)
H20.30210.78930.82310.017*
C10.26664 (10)1.21183 (8)0.78518 (6)0.0165 (2)
C20.23225 (12)1.29360 (9)0.80816 (7)0.0238 (2)
H2A0.28481.34450.83410.029*
C30.11833 (13)1.29837 (10)0.79187 (8)0.0272 (3)
H3A0.09481.35300.80680.033*
C40.03991 (11)1.22298 (10)0.75379 (7)0.0237 (2)
H4A−0.03571.22640.74370.028*
C50.07496 (10)1.14171 (9)0.73055 (6)0.0182 (2)
H5A0.02211.09090.70500.022*
C60.18748 (9)1.13516 (8)0.74484 (6)0.01415 (19)
C70.22560 (9)1.05217 (7)0.71488 (6)0.01278 (18)
H7A0.27181.07910.69530.015*
C80.30324 (9)0.97559 (7)0.77992 (6)0.01276 (18)
H8A0.37101.00730.82540.015*
C90.34324 (9)0.91109 (8)0.73914 (6)0.01396 (19)
C100.24244 (9)0.85293 (7)0.67446 (6)0.01329 (18)
H10A0.27180.80960.65060.016*
C110.15541 (9)0.92867 (8)0.61200 (6)0.01379 (19)
H11A0.19440.96120.58930.017*
C120.04571 (10)0.87765 (8)0.54689 (6)0.0154 (2)
C13−0.06243 (10)0.88483 (9)0.53918 (7)0.0187 (2)
H13A−0.06970.92560.57280.022*
C14−0.16013 (11)0.83219 (9)0.48217 (7)0.0246 (3)
H14A−0.23200.83820.47750.029*
C15−0.14919 (12)0.77071 (9)0.43244 (7)0.0272 (3)
H15A−0.21380.73480.39480.033*
C16−0.04261 (12)0.76229 (9)0.43826 (7)0.0248 (3)
H16A−0.03590.72080.40480.030*
C170.05428 (11)0.81632 (8)0.49459 (6)0.0190 (2)
C180.23146 (9)0.91662 (7)0.80614 (6)0.01316 (18)
H18A0.14970.93900.77360.016*
C190.27336 (9)0.93751 (8)0.89074 (6)0.01536 (19)
C200.20440 (11)0.99246 (9)0.90835 (7)0.0198 (2)
H20A0.13191.01580.86750.024*
C210.24159 (12)1.01339 (10)0.98597 (7)0.0256 (3)
H21A0.19461.05050.99660.031*
C220.34911 (12)0.97828 (10)1.04684 (7)0.0270 (3)
H22A0.37420.99171.09860.032*
C230.41963 (11)0.92322 (9)1.03119 (7)0.0231 (2)
H23A0.49140.89941.07240.028*
C240.38282 (10)0.90363 (8)0.95362 (6)0.0178 (2)
C250.18339 (9)0.79109 (7)0.70891 (6)0.01322 (18)
H25A0.09970.80860.67910.016*
C260.19018 (9)0.68381 (8)0.69502 (6)0.01475 (19)
C270.08894 (10)0.63165 (9)0.64255 (7)0.0196 (2)
H27A0.01610.66250.61760.024*
C280.09463 (12)0.53367 (9)0.62668 (8)0.0268 (3)
H28A0.02630.49980.59130.032*
C290.20283 (12)0.48772 (9)0.66404 (9)0.0277 (3)
H29A0.20670.42230.65410.033*
C300.30598 (11)0.53789 (9)0.71632 (8)0.0229 (2)
H30A0.37850.50660.74090.028*
C310.29907 (10)0.63545 (8)0.73123 (7)0.0170 (2)
C320.45303 (13)1.28244 (10)0.82399 (9)0.0301 (3)
H32A0.52391.26550.82680.045*
H32B0.47231.30290.87490.045*
H32C0.41401.33440.78700.045*
C330.18282 (14)0.74382 (13)0.46205 (9)0.0394 (4)
H33A0.26380.74650.47820.059*
H33B0.13310.75590.40660.059*
H33C0.16570.68070.47340.059*
C340.55698 (11)0.81167 (11)0.99437 (8)0.0296 (3)
H34A0.59570.78030.97230.044*
H34B0.54230.76511.02320.044*
H34C0.60630.86271.02910.044*
C350.50914 (11)0.64911 (11)0.81418 (9)0.0313 (3)
H35A0.56850.69810.84150.047*
H35B0.51560.62150.77330.047*
H35C0.51980.59900.85040.047*
O60.50000.50001.00000.1179 (14)
C36A0.4158 (5)0.5316 (5)0.9475 (3)0.0687 (15)0.50
H36A0.40780.50470.90060.082*0.50
H36B0.42870.60080.94690.082*0.50
C37A0.2995 (6)0.5198 (5)0.9382 (5)0.0812 (17)0.50
H37A0.23910.54880.88950.122*0.50
H37B0.30150.55110.98110.122*0.50
H37C0.28300.45190.93790.122*0.50
C38A0.6159 (5)0.4889 (4)1.0238 (3)0.0600 (12)0.50
H38A0.64440.55371.02420.072*0.50
H38B0.61430.45410.98170.072*0.50
C39A0.7123 (6)0.4408 (4)1.1000 (3)0.0737 (18)0.50
H39A0.78540.44261.10280.111*0.50
H39B0.69120.37451.10090.111*0.50
H39C0.72100.47511.14400.111*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0177 (4)0.0172 (4)0.0257 (4)−0.0036 (3)0.0114 (3)−0.0021 (3)
O20.0307 (5)0.0253 (5)0.0222 (4)0.0058 (4)0.0168 (4)−0.0031 (3)
O30.0154 (4)0.0208 (4)0.0313 (5)−0.0015 (3)0.0144 (3)−0.0044 (3)
O40.0152 (3)0.0229 (4)0.0167 (4)0.0030 (3)0.0036 (3)0.0012 (3)
O50.0131 (3)0.0185 (4)0.0276 (4)0.0024 (3)0.0073 (3)0.0005 (3)
N10.0140 (4)0.0125 (4)0.0120 (4)0.0023 (3)0.0052 (3)−0.0002 (3)
N20.0150 (4)0.0122 (4)0.0127 (4)−0.0003 (3)0.0059 (3)0.0000 (3)
C10.0188 (5)0.0149 (5)0.0157 (4)0.0005 (4)0.0094 (4)0.0009 (4)
C20.0313 (6)0.0156 (5)0.0242 (6)0.0004 (4)0.0150 (5)−0.0037 (4)
C30.0357 (7)0.0227 (6)0.0273 (6)0.0084 (5)0.0197 (5)−0.0024 (5)
C40.0234 (5)0.0294 (6)0.0212 (5)0.0096 (5)0.0141 (5)0.0017 (5)
C50.0171 (5)0.0212 (5)0.0170 (5)0.0021 (4)0.0098 (4)0.0003 (4)
C60.0167 (4)0.0132 (4)0.0127 (4)0.0024 (3)0.0081 (4)0.0016 (3)
C70.0129 (4)0.0120 (4)0.0134 (4)0.0005 (3)0.0072 (3)0.0000 (3)
C80.0107 (4)0.0129 (4)0.0130 (4)−0.0001 (3)0.0054 (3)−0.0002 (3)
C90.0136 (4)0.0123 (4)0.0161 (4)0.0006 (3)0.0082 (4)0.0018 (3)
C100.0128 (4)0.0125 (4)0.0151 (4)0.0010 (3)0.0080 (3)0.0004 (3)
C110.0156 (4)0.0134 (4)0.0134 (4)0.0013 (3)0.0086 (4)0.0007 (3)
C120.0184 (5)0.0136 (4)0.0113 (4)0.0010 (4)0.0062 (4)0.0008 (3)
C130.0180 (5)0.0192 (5)0.0152 (5)−0.0005 (4)0.0068 (4)−0.0007 (4)
C140.0198 (5)0.0243 (6)0.0206 (5)−0.0034 (4)0.0053 (4)−0.0008 (4)
C150.0277 (6)0.0200 (6)0.0187 (5)−0.0036 (5)0.0029 (5)−0.0023 (4)
C160.0345 (6)0.0159 (5)0.0147 (5)0.0025 (4)0.0076 (5)−0.0017 (4)
C170.0262 (5)0.0149 (5)0.0137 (4)0.0041 (4)0.0095 (4)0.0014 (4)
C180.0126 (4)0.0134 (4)0.0125 (4)−0.0004 (3)0.0062 (3)0.0004 (3)
C190.0163 (4)0.0158 (5)0.0132 (4)−0.0037 (4)0.0076 (4)−0.0010 (3)
C200.0223 (5)0.0203 (5)0.0186 (5)−0.0031 (4)0.0123 (4)−0.0020 (4)
C210.0317 (6)0.0284 (6)0.0218 (6)−0.0049 (5)0.0180 (5)−0.0063 (5)
C220.0347 (7)0.0304 (7)0.0155 (5)−0.0101 (5)0.0133 (5)−0.0054 (5)
C230.0243 (5)0.0235 (6)0.0142 (5)−0.0074 (4)0.0057 (4)0.0006 (4)
C240.0180 (5)0.0167 (5)0.0150 (5)−0.0038 (4)0.0067 (4)0.0001 (4)
C250.0127 (4)0.0124 (4)0.0139 (4)0.0001 (3)0.0069 (3)−0.0004 (3)
C260.0155 (4)0.0124 (4)0.0170 (4)−0.0006 (3)0.0093 (4)−0.0003 (3)
C270.0178 (5)0.0179 (5)0.0233 (5)−0.0029 (4)0.0113 (4)−0.0051 (4)
C280.0269 (6)0.0198 (6)0.0349 (7)−0.0075 (5)0.0177 (5)−0.0108 (5)
C290.0351 (7)0.0133 (5)0.0418 (7)−0.0025 (5)0.0257 (6)−0.0055 (5)
C300.0259 (6)0.0151 (5)0.0320 (6)0.0046 (4)0.0185 (5)0.0030 (4)
C310.0172 (5)0.0142 (5)0.0207 (5)0.0007 (4)0.0110 (4)0.0021 (4)
C320.0307 (6)0.0221 (6)0.0381 (7)−0.0109 (5)0.0192 (6)−0.0022 (5)
C330.0403 (8)0.0449 (9)0.0263 (7)0.0213 (7)0.0140 (6)−0.0079 (6)
C340.0184 (5)0.0324 (7)0.0247 (6)0.0049 (5)0.0032 (5)0.0074 (5)
C350.0154 (5)0.0327 (7)0.0389 (7)0.0075 (5)0.0104 (5)0.0038 (6)
O60.109 (3)0.102 (3)0.186 (5)−0.011 (2)0.108 (3)−0.055 (3)
C36A0.078 (4)0.080 (4)0.063 (3)−0.039 (3)0.049 (3)−0.018 (3)
C37A0.088 (4)0.072 (4)0.110 (5)−0.019 (3)0.071 (4)−0.032 (4)
C38A0.059 (3)0.078 (3)0.048 (2)−0.018 (3)0.033 (2)−0.005 (2)
C39A0.125 (5)0.053 (3)0.076 (3)0.027 (3)0.076 (4)0.023 (3)

Geometric parameters (Å, °)

O1—C11.3737 (14)C21—H21A0.9300
O1—C321.4258 (15)C22—C231.387 (2)
O2—C171.3654 (16)C22—H22A0.9300
O2—C331.4281 (16)C23—C241.3952 (16)
O3—C91.2186 (13)C23—H23A0.9300
O4—C241.3701 (15)C25—C261.5156 (15)
O4—C341.4281 (14)C25—H25A0.9800
O5—C311.3723 (14)C26—C271.3916 (15)
O5—C351.4243 (14)C26—C311.4061 (15)
N1—C71.4668 (13)C27—C281.3984 (17)
N1—C111.4669 (14)C27—H27A0.9300
N1—H10.8713C28—C291.3825 (19)
N2—C251.4748 (13)C28—H28A0.9300
N2—C181.4757 (14)C29—C301.3919 (19)
N2—H20.8733C29—H29A0.9300
C1—C21.3929 (16)C30—C311.3909 (16)
C1—C61.4056 (15)C30—H30A0.9300
C2—C31.393 (2)C32—H32A0.9600
C2—H2A0.9300C32—H32B0.9600
C3—C41.381 (2)C32—H32C0.9600
C3—H3A0.9300C33—H33A0.9600
C4—C51.3948 (17)C33—H33B0.9600
C4—H4A0.9300C33—H33C0.9600
C5—C61.3914 (15)C34—H34A0.9600
C5—H5A0.9300C34—H34B0.9600
C6—C71.5122 (15)C34—H34C0.9600
C7—C81.5637 (14)C35—H35A0.9600
C7—H7A0.9800C35—H35B0.9600
C8—C91.5036 (15)C35—H35C0.9600
C8—C181.5676 (15)O6—C36Ai1.140 (7)
C8—H8A0.9800O6—C36A1.140 (6)
C9—C101.5075 (14)O6—C38A1.378 (6)
C10—C111.5662 (14)O6—C38Ai1.378 (6)
C10—C251.5713 (15)C36A—C38Ai0.939 (6)
C10—H10A0.9800C36A—C37A1.492 (8)
C11—C121.5181 (15)C36A—C39Ai1.504 (8)
C11—H11A0.9800C36A—H36A0.9700
C12—C131.3905 (16)C36A—H36B0.9700
C12—C171.4110 (16)C37A—C39Ai0.885 (8)
C13—C141.3943 (16)C37A—C38Ai0.979 (7)
C13—H13A0.9300C37A—H37A0.9600
C14—C151.387 (2)C37A—H37B0.9600
C14—H14A0.9300C37A—H37C0.9600
C15—C161.389 (2)C38A—C36Ai0.939 (6)
C15—H15A0.9300C38A—C37Ai0.979 (8)
C16—C171.3947 (17)C38A—C39A1.527 (8)
C16—H16A0.9300C38A—H38A0.9700
C18—C191.5143 (15)C38A—H38B0.9700
C18—H18A0.9800C39A—C37Ai0.885 (8)
C19—C201.3931 (17)C39A—C36Ai1.504 (8)
C19—C241.4070 (15)C39A—H39A0.9600
C20—C211.3985 (17)C39A—H39B0.9600
C20—H20A0.9300C39A—H39C0.9600
C21—C221.385 (2)
C1—O1—C32118.28 (10)C26—C25—H25A106.9
C17—O2—C33117.96 (11)C10—C25—H25A106.9
C24—O4—C34117.55 (10)C27—C26—C31118.07 (10)
C31—O5—C35117.90 (10)C27—C26—C25120.69 (10)
C7—N1—C11113.09 (8)C31—C26—C25121.14 (9)
C7—N1—H1108.6C26—C27—C28121.23 (11)
C11—N1—H1108.8C26—C27—H27A119.4
C25—N2—C18110.91 (8)C28—C27—H27A119.4
C25—N2—H2111.8C29—C28—C27119.37 (11)
C18—N2—H2108.2C29—C28—H28A120.3
O1—C1—C2123.61 (10)C27—C28—H28A120.3
O1—C1—C6115.51 (10)C28—C29—C30120.93 (11)
C2—C1—C6120.88 (11)C28—C29—H29A119.5
C1—C2—C3119.30 (12)C30—C29—H29A119.5
C1—C2—H2A120.4C31—C30—C29119.08 (11)
C3—C2—H2A120.4C31—C30—H30A120.5
C4—C3—C2120.79 (12)C29—C30—H30A120.5
C4—C3—H3A119.6O5—C31—C30123.54 (10)
C2—C3—H3A119.6O5—C31—C26115.16 (10)
C3—C4—C5119.46 (12)C30—C31—C26121.30 (10)
C3—C4—H4A120.3O1—C32—H32A109.5
C5—C4—H4A120.3O1—C32—H32B109.5
C6—C5—C4121.27 (11)H32A—C32—H32B109.5
C6—C5—H5A119.4O1—C32—H32C109.5
C4—C5—H5A119.4H32A—C32—H32C109.5
C5—C6—C1118.28 (10)H32B—C32—H32C109.5
C5—C6—C7122.83 (10)O2—C33—H33A109.5
C1—C6—C7118.80 (10)O2—C33—H33B109.5
N1—C7—C6111.03 (8)H33A—C33—H33B109.5
N1—C7—C8108.04 (8)O2—C33—H33C109.5
C6—C7—C8112.91 (8)H33A—C33—H33C109.5
N1—C7—H7A108.2H33B—C33—H33C109.5
C6—C7—H7A108.2O4—C34—H34A109.5
C8—C7—H7A108.2O4—C34—H34B109.5
C9—C8—C7102.19 (8)H34A—C34—H34B109.5
C9—C8—C18111.09 (8)O4—C34—H34C109.5
C7—C8—C18112.34 (8)H34A—C34—H34C109.5
C9—C8—H8A110.3H34B—C34—H34C109.5
C7—C8—H8A110.3O5—C35—H35A109.5
C18—C8—H8A110.3O5—C35—H35B109.5
O3—C9—C8123.61 (10)H35A—C35—H35B109.5
O3—C9—C10124.45 (10)O5—C35—H35C109.5
C8—C9—C10111.46 (9)H35A—C35—H35C109.5
C9—C10—C11105.99 (8)H35B—C35—H35C109.5
C9—C10—C25109.83 (8)C36Ai—O6—C36A179.998 (4)
C11—C10—C25112.32 (8)C36A—O6—C38A137.5 (3)
C9—C10—H10A109.5C36Ai—O6—C38Ai137.5 (3)
C11—C10—H10A109.5C38A—O6—C38Ai179.998 (2)
C25—C10—H10A109.5C38Ai—C36A—O682.4 (6)
N1—C11—C12110.07 (9)O6—C36A—C37A121.7 (6)
N1—C11—C10109.79 (8)C38Ai—C36A—C39Ai73.3 (5)
C12—C11—C10110.10 (8)O6—C36A—C39Ai155.6 (5)
N1—C11—H11A109.0C38Ai—C36A—H36A130.7
C12—C11—H11A109.0O6—C36A—H36A106.9
C10—C11—H11A109.0C37A—C36A—H36A106.9
C13—C12—C17118.28 (10)C39Ai—C36A—H36A89.9
C13—C12—C11122.40 (10)C38Ai—C36A—H36B116.7
C17—C12—C11119.23 (10)O6—C36A—H36B106.9
C12—C13—C14121.41 (11)C37A—C36A—H36B106.9
C12—C13—H13A119.3C39Ai—C36A—H36B84.1
C14—C13—H13A119.3H36A—C36A—H36B106.7
C15—C14—C13119.40 (13)C39Ai—C37A—C38Ai109.9 (9)
C15—C14—H14A120.3C39Ai—C37A—C36A73.5 (7)
C13—C14—H14A120.3C38Ai—C37A—H37A146.8
C14—C15—C16120.65 (11)C36A—C37A—H37A109.5
C14—C15—H15A119.7C39Ai—C37A—H37B115.0
C16—C15—H15A119.7C38Ai—C37A—H37B84.2
C15—C16—C17119.66 (12)C36A—C37A—H37B109.5
C15—C16—H16A120.2H37A—C37A—H37B109.5
C17—C16—H16A120.2C39Ai—C37A—H37C131.3
O2—C17—C16124.34 (11)C38Ai—C37A—H37C93.1
O2—C17—C12115.09 (10)C36A—C37A—H37C109.5
C16—C17—C12120.57 (12)H37A—C37A—H37C109.5
N2—C18—C19111.18 (8)H37B—C37A—H37C109.5
N2—C18—C8112.77 (9)C36Ai—C38A—C37Ai102.1 (8)
C19—C18—C8111.73 (8)C36Ai—C38A—O655.1 (5)
N2—C18—H18A106.9C37Ai—C38A—O6155.5 (7)
C19—C18—H18A106.9C36Ai—C38A—C39A70.6 (5)
C8—C18—H18A106.9O6—C38A—C39A125.7 (4)
C20—C19—C24118.01 (10)C36Ai—C38A—H38A125.9
C20—C19—C18120.45 (10)C37Ai—C38A—H38A79.5
C24—C19—C18121.53 (10)O6—C38A—H38A105.9
C19—C20—C21121.53 (11)C39A—C38A—H38A105.9
C19—C20—H20A119.2C36Ai—C38A—H38B127.1
C21—C20—H20A119.2C37Ai—C38A—H38B95.0
C22—C21—C20119.34 (12)O6—C38A—H38B105.9
C22—C21—H21A120.3C39A—C38A—H38B105.9
C20—C21—H21A120.3H38A—C38A—H38B106.2
C21—C22—C23120.48 (11)C37Ai—C39A—C36Ai72.1 (7)
C21—C22—H22A119.8C37Ai—C39A—H39A74.0
C23—C22—H22A119.8C36Ai—C39A—H39A145.6
C22—C23—C24119.95 (11)C38A—C39A—H39A109.5
C22—C23—H23A120.0C37Ai—C39A—H39B133.4
C24—C23—H23A120.0C36Ai—C39A—H39B90.0
O4—C24—C23123.94 (10)C38A—C39A—H39B109.5
O4—C24—C19115.38 (10)H39A—C39A—H39B109.5
C23—C24—C19120.68 (11)C37Ai—C39A—H39C112.7
N2—C25—C26111.42 (8)C36Ai—C39A—H39C89.1
N2—C25—C10113.87 (8)C38A—C39A—H39C109.5
C26—C25—C10110.31 (9)H39A—C39A—H39C109.5
N2—C25—H25A106.9H39B—C39A—H39C109.5
C32—O1—C1—C2−13.03 (17)C7—C8—C18—C19−114.20 (10)
C32—O1—C1—C6166.55 (11)N2—C18—C19—C20−125.03 (11)
O1—C1—C2—C3−179.41 (11)C8—C18—C19—C20108.00 (11)
C6—C1—C2—C31.03 (18)N2—C18—C19—C2455.84 (13)
C1—C2—C3—C40.4 (2)C8—C18—C19—C24−71.13 (13)
C2—C3—C4—C5−0.8 (2)C24—C19—C20—C21−0.32 (17)
C3—C4—C5—C6−0.13 (18)C18—C19—C20—C21−179.47 (11)
C4—C5—C6—C11.47 (16)C19—C20—C21—C22−0.40 (19)
C4—C5—C6—C7−174.94 (10)C20—C21—C22—C230.3 (2)
O1—C1—C6—C5178.48 (10)C21—C22—C23—C240.59 (19)
C2—C1—C6—C5−1.92 (16)C34—O4—C24—C233.27 (17)
O1—C1—C6—C7−4.96 (14)C34—O4—C24—C19−176.92 (10)
C2—C1—C6—C7174.64 (10)C22—C23—C24—O4178.47 (11)
C11—N1—C7—C6172.53 (9)C22—C23—C24—C19−1.33 (18)
C11—N1—C7—C8−63.14 (11)C20—C19—C24—O4−178.64 (10)
C5—C6—C7—N119.29 (14)C18—C19—C24—O40.51 (15)
C1—C6—C7—N1−157.11 (9)C20—C19—C24—C231.18 (16)
C5—C6—C7—C8−102.23 (11)C18—C19—C24—C23−179.67 (10)
C1—C6—C7—C881.38 (12)C18—N2—C25—C26175.83 (9)
N1—C7—C8—C964.88 (10)C18—N2—C25—C1050.28 (11)
C6—C7—C8—C9−171.93 (9)C9—C10—C25—N25.95 (12)
N1—C7—C8—C18−54.25 (11)C11—C10—C25—N2−111.74 (9)
C6—C7—C8—C1868.94 (11)C9—C10—C25—C26−120.19 (9)
C7—C8—C9—O3103.39 (11)C11—C10—C25—C26122.13 (9)
C18—C8—C9—O3−136.60 (11)N2—C25—C26—C27121.40 (11)
C7—C8—C9—C10−68.94 (10)C10—C25—C26—C27−111.10 (11)
C18—C8—C9—C1051.06 (11)N2—C25—C26—C31−62.18 (14)
O3—C9—C10—C11−107.83 (12)C10—C25—C26—C3165.32 (13)
C8—C9—C10—C1164.43 (11)C31—C26—C27—C280.68 (18)
O3—C9—C10—C25130.62 (11)C25—C26—C27—C28177.21 (12)
C8—C9—C10—C25−57.13 (11)C26—C27—C28—C290.2 (2)
C7—N1—C11—C12178.51 (8)C27—C28—C29—C30−0.8 (2)
C7—N1—C11—C1057.16 (11)C28—C29—C30—C310.5 (2)
C9—C10—C11—N1−54.43 (11)C35—O5—C31—C304.10 (18)
C25—C10—C11—N165.51 (11)C35—O5—C31—C26−175.12 (11)
C9—C10—C11—C12−175.76 (9)C29—C30—C31—O5−178.70 (12)
C25—C10—C11—C12−55.83 (11)C29—C30—C31—C260.47 (19)
N1—C11—C12—C13−13.88 (14)C27—C26—C31—O5178.20 (10)
C10—C11—C12—C13107.29 (12)C25—C26—C31—O51.69 (16)
N1—C11—C12—C17169.67 (9)C27—C26—C31—C30−1.03 (17)
C10—C11—C12—C17−69.17 (13)C25—C26—C31—C30−177.55 (11)
C17—C12—C13—C140.85 (17)C38A—O6—C36A—C38Ai180.000 (7)
C11—C12—C13—C14−175.64 (11)C38A—O6—C36A—C37A172.7 (5)
C12—C13—C14—C150.52 (18)C38Ai—O6—C36A—C37A−7.3 (5)
C13—C14—C15—C16−0.91 (19)C38A—O6—C36A—C39Ai−178.6 (11)
C14—C15—C16—C17−0.10 (19)C38Ai—O6—C36A—C39Ai1.4 (11)
C33—O2—C17—C16−11.08 (17)C38Ai—C36A—C37A—C39Ai162.4 (11)
C33—O2—C17—C12169.62 (11)O6—C36A—C37A—C39Ai173.7 (7)
C15—C16—C17—O2−177.76 (11)O6—C36A—C37A—C38Ai11.3 (7)
C15—C16—C17—C121.51 (17)C39Ai—C36A—C37A—C38Ai−162.4 (11)
C13—C12—C17—O2177.47 (10)C36A—O6—C38A—C36Ai179.999 (10)
C11—C12—C17—O2−5.94 (15)C36Ai—O6—C38A—C37Ai−23.4 (15)
C13—C12—C17—C16−1.86 (16)C36A—O6—C38A—C37Ai156.6 (15)
C11—C12—C17—C16174.74 (10)C36Ai—O6—C38A—C39A0.7 (5)
C25—N2—C18—C19176.88 (8)C36A—O6—C38A—C39A−179.3 (5)
C25—N2—C18—C8−56.72 (11)C36Ai—C38A—C39A—C37Ai−161.3 (11)
C9—C8—C18—N25.92 (11)O6—C38A—C39A—C37Ai−161.9 (10)
C7—C8—C18—N2119.70 (9)C37Ai—C38A—C39A—C36Ai161.3 (11)
C9—C8—C18—C19132.02 (9)O6—C38A—C39A—C36Ai−0.6 (5)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O40.872.192.8184 (13)129
N2—H2···O50.872.322.8936 (15)124
C4—H4A···N2ii0.932.603.470 (2)156
N1—H1···Cg1iii0.872.663.4167 (10)146
C34—H34C···Cg2iv0.962.703.5099 (16)143

Symmetry codes: (ii) −x, y+1/2, −z+3/2; (iii) −x, −y+2, −z+1; (iv) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2903).

References

  • Arias-Perez, M. S., Alejo, A. & Maroto, A. (1997). Tetrahedron, 53, 13099–13110.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Srikrishna, A. & Vijayakumar, D. (1998). Tetrahedron Lett 39, 5833–5834.
  • Vijayakumar, V., Sundaravadivelu, M., Perumal, S. & Hewlins, M. J. E. (2000). Magn. Reson. Chem.38, 883–885.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography