PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2564–o2565.
Published online 2009 September 30. doi:  10.1107/S160053680903829X
PMCID: PMC2970292

11β,13-Dihydro­lactucin-8-O-acetate hemihydrate

Abstract

The title structure (systematic name: 9-hydroxy­methyl-3,6-di­methyl-3-methyl­ene-2,7-dioxo-3,3a,4,5,9a,9b-hexa­hydro­azu­leno[4,5-b]furan-4-yl acetate hemihydrate), C17H20O6·0.5H2O, from Lactuca floridana, has two independent sesquiterpene lactone mol­ecules in the asymmetric unit. Both have their seven-membered rings in the chair conformation. In the crystal, the OH groups and the water mol­ecule form classical O—H(...)O hydrogen bonds with O(...)O distances in the range 2.6750 (17)–2.8160 (18) Å.

Related literature

For phytochemical reports of the title compound, see: Bohlmann et al. (1981 [triangle]); Djordjevic et al. (2004 [triangle]); Sarg et al. (1982 [triangle]); Song et al. (1995 [triangle]). The crystal structures of several related compounds have been reported: 8-α-hydroxy­achillin (Campos et al., 1989 [triangle]); matricarin (Parvez et al., 2002 [triangle]); lactucin (Ruban et al., 1978 [triangle]); lactucopicrin (Ren et al., 2003 [triangle]); absolute configuration of sesquiterpene lactones Fischer et al. (1979 [triangle]). For analysis of Bijvoet pairs, see: Hooft et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2564-scheme1.jpg

Experimental

Crystal data

  • C17H20O6·0.5H2O
  • M r = 329.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2564-efi1.jpg
  • a = 10.9276 (5) Å
  • b = 7.4658 (5) Å
  • c = 19.8571 (10) Å
  • β = 100.850 (5)°
  • V = 1591.05 (15) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.88 mm−1
  • T = 90 K
  • 0.27 × 0.17 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.796, T max = 0.917
  • 23565 measured reflections
  • 5642 independent reflections
  • 5513 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.068
  • S = 1.03
  • 5642 reflections
  • 445 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.14 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2516 Friedel pairs
  • Flack parameter: −0.01 (10)

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903829X/pv2210sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903829X/pv2210Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Rosalind Segesta for financial assistance with the open-access fee.

supplementary crystallographic information

Comment

Hairy root cultures of blue-flowered lettice, Lactuca floridana, tribe Lactuceae (Asteraceae) are useful for the study of the biosynthesis of guaianolide-type sesquiterpene lactones (Song et al., 1995). The title guaianolide was isolated from L. floridana and crystallized as the hemihydrate.

The structures of both independent molecules are shown in Fig. 1. The conformations of (1) and (1 A) are very similar. Both seven-membered rings form chair conformations where atoms C5/C6/C8/C9 are nearly coplanar (maximum deviation 0.022 (1) Å for molecule 1 and 0.024 (1) Å for 1 A). Atom C1 is 0.991 (1) Å above the plane, C7 is 0.751 (1) Å below, and C10 is 1.029 (1) Å above. Atom C1A is 0.881 (1) Å above the plane, C7A is 0.773 (1) Å below, and C10A is 0.965 (1) Å above. Lactone ring (C6/C7/C11/C12/O1) has the C7 envelope conformation, with C7 0.582 (1) Å out of the best plane of the other four (maximum deviation 0.022 (1) Å. Lactone ring (C6A/C7A/C11A/C12A/O1A) also has the C7 envelope conformation, with C7A showing deviation 0.580 (1) Å, and maximum deviation 0.007 (1) Å for the other four. The other 5-membered rings (C1—C5 and C1a—C5A,) are essentially planar (maximum deviations 0.011 (1) Å and 0.041 (1) Å, respectively). This conformation is similar to that seen in matricarin (Parvez et al., 2002), which differs only by lacking the OH group at C15.

Hydrogen bonding involves the OH groups, the water molecule, and the acetate CO group, and forms double-strand chains along [0 1 0]. In each chain, the alternation of hydrogen bonds is (O6A—H···O6—H···H2O···)n.

The absolute configuration was determined by refinement of the Flack (1983) parameter, based on resonant scattering of the light atoms. It agrees with that of lactucin (Ruban et al., 1978) and with the accepted configuration of sesquiterpene lactones from higher plants (Fischer et al., 1979). Analysis of the Bijvoet pairs using the method of Hooft et al. (2008) yielded y = 0.03 (4) for this structure, confirming the absolute configuration.

Experimental

Isolation of the title compound from Lactuca floridana has been described (Bohlmann et al., 1981; Song et al., 1995). Crystals were grown by evaporation from ethyl acetate.

Refinement

H atoms on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and thereafter treated as riding. Coordinates for the H atoms on O were refined. Uiso for H was assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl and OH). A torsional parameter was refined for each methyl group.

Figures

Fig. 1.
Ellipsoids at the 50% probability level, with H atoms having arbitrary radius. Both molecules are shown in the same orientation.

Crystal data

C17H20O6·0.5H2OF(000) = 700
Mr = 329.34Dx = 1.375 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 9656 reflections
a = 10.9276 (5) Åθ = 2.3–68.3°
b = 7.4658 (5) ŵ = 0.88 mm1
c = 19.8571 (10) ÅT = 90 K
β = 100.850 (5)°Plate, colorless
V = 1591.05 (15) Å30.27 × 0.17 × 0.10 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer5642 independent reflections
Radiation source: fine-focus sealed tube5513 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 69.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −12→13
Tmin = 0.796, Tmax = 0.917k = −9→8
23565 measured reflectionsl = −23→23

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027w = 1/[σ2(Fo2) + (0.0314P)2 + 0.4082P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.20 e Å3
5642 reflectionsΔρmin = −0.14 e Å3
445 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00101 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2516 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.01 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.36074 (9)0.72760 (16)0.04034 (5)0.0256 (2)
O20.54683 (12)0.8177 (2)0.02323 (6)0.0473 (4)
O3−0.15403 (9)0.63628 (15)0.05240 (5)0.0255 (2)
O40.19069 (10)0.67077 (15)−0.19419 (5)0.0240 (2)
O50.07993 (12)0.91019 (18)−0.23883 (6)0.0345 (3)
O60.25725 (10)0.54254 (16)0.22516 (5)0.0252 (2)
H6O0.2544 (19)0.651 (3)0.2400 (10)0.038*
C10.02479 (13)0.5810 (2)−0.00331 (8)0.0203 (3)
C2−0.04236 (14)0.61236 (19)0.05490 (7)0.0211 (3)
C30.05145 (14)0.6056 (2)0.11802 (7)0.0216 (3)
H30.03380.61890.16280.026*
C40.16502 (14)0.5782 (2)0.10450 (7)0.0196 (3)
C50.16294 (13)0.5614 (2)0.02770 (7)0.0191 (3)
H50.19330.44020.01700.023*
C60.23650 (13)0.7063 (2)−0.00135 (6)0.0201 (3)
H60.19070.8225−0.00250.024*
C70.26251 (13)0.6665 (2)−0.07304 (7)0.0210 (3)
H70.29010.5390−0.07420.025*
C80.14873 (13)0.6930 (2)−0.12911 (6)0.0210 (3)
H80.11330.8156−0.12600.025*
C90.04910 (14)0.5504 (2)−0.12638 (7)0.0221 (3)
H9A−0.00850.5477−0.17130.026*
H9B0.09030.4319−0.11950.026*
C10−0.02665 (14)0.5780 (2)−0.07062 (7)0.0210 (3)
C110.37468 (16)0.7875 (3)−0.07459 (8)0.0334 (4)
H110.34460.9122−0.08610.040*
C120.44090 (16)0.7817 (3)−0.00012 (8)0.0327 (4)
C130.46307 (17)0.7337 (4)−0.12182 (9)0.0504 (6)
H13A0.54170.7993−0.10890.076*
H13B0.42520.7625−0.16930.076*
H13C0.47930.6047−0.11770.076*
C14−0.16387 (14)0.5988 (2)−0.09751 (8)0.0238 (3)
H14A−0.20670.6226−0.05930.036*
H14B−0.19670.4884−0.12090.036*
H14C−0.17780.6990−0.12990.036*
C150.28150 (14)0.5536 (2)0.15730 (7)0.0232 (3)
H15A0.32410.44270.14690.028*
H15B0.33840.65540.15460.028*
C160.14984 (13)0.7902 (2)−0.24440 (7)0.0212 (3)
C170.20561 (16)0.7550 (2)−0.30617 (7)0.0298 (4)
H17A0.14490.7846−0.34760.045*
H17B0.22830.6282−0.30730.045*
H17C0.28030.8290−0.30420.045*
O1A0.10059 (9)0.30940 (15)0.46612 (5)0.0229 (2)
O2A−0.08856 (10)0.34776 (18)0.49033 (5)0.0320 (3)
O3A0.61587 (9)0.19216 (15)0.43180 (5)0.0258 (2)
O4A0.29523 (9)0.22296 (15)0.69401 (5)0.0214 (2)
O5A0.45039 (11)0.39546 (17)0.74928 (5)0.0320 (3)
O6A0.18713 (10)0.21622 (16)0.27100 (5)0.0258 (2)
H60A0.2039 (19)0.317 (3)0.2552 (10)0.039*
C1A0.44199 (13)0.17797 (19)0.49391 (7)0.0188 (3)
C2A0.50439 (13)0.1995 (2)0.43344 (7)0.0205 (3)
C3A0.40492 (14)0.2229 (2)0.37344 (7)0.0215 (3)
H3A0.41870.24430.32830.026*
C4A0.29305 (13)0.2106 (2)0.39010 (7)0.0199 (3)
C5A0.30176 (13)0.1693 (2)0.46618 (7)0.0190 (3)
H5A0.27200.04420.47120.023*
C6A0.22888 (13)0.2972 (2)0.50361 (7)0.0191 (3)
H6A0.26850.41840.50690.023*
C7A0.21326 (12)0.2344 (2)0.57504 (6)0.0196 (3)
H7A0.19570.10280.57280.024*
C8A0.33015 (13)0.2662 (2)0.62853 (7)0.0194 (3)
H8A0.35820.39350.62770.023*
C9A0.43475 (14)0.1374 (2)0.61948 (7)0.0215 (3)
H91A0.49790.13830.66240.026*
H92A0.39950.01500.61380.026*
C10A0.50089 (13)0.17411 (19)0.56004 (7)0.0193 (3)
C11A0.09343 (13)0.3330 (2)0.58339 (7)0.0250 (3)
H11A0.11540.45960.59690.030*
C12A0.02146 (14)0.3323 (2)0.51022 (7)0.0243 (3)
C13A0.01788 (14)0.2562 (3)0.63306 (8)0.0307 (4)
H13D−0.06450.31300.62540.046*
H13E0.06090.27930.68020.046*
H13F0.00830.12680.62570.046*
C14A0.63888 (13)0.2030 (2)0.58228 (7)0.0230 (3)
H14D0.67610.22650.54200.034*
H14E0.67680.09570.60590.034*
H14F0.65350.30570.61350.034*
C15A0.17124 (13)0.2246 (2)0.34040 (7)0.0231 (3)
H15C0.11580.12590.34920.028*
H15D0.13030.33910.34810.028*
C16A0.36493 (14)0.2941 (2)0.75074 (7)0.0233 (3)
C17A0.32219 (17)0.2309 (3)0.81365 (8)0.0351 (4)
H17D0.37980.27380.85430.053*
H17E0.32020.09960.81400.053*
H17F0.23850.27760.81400.053*
O70.29309 (12)0.89082 (18)0.25390 (6)0.0333 (3)
H720.371 (2)0.911 (3)0.2489 (11)0.050 (6)*
H710.259 (3)0.997 (4)0.2573 (14)0.077 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0262 (5)0.0319 (6)0.0171 (5)−0.0085 (5)0.0001 (4)0.0013 (4)
O20.0361 (7)0.0768 (11)0.0268 (6)−0.0292 (7)0.0006 (5)0.0032 (7)
O30.0234 (5)0.0289 (6)0.0248 (5)−0.0002 (4)0.0058 (4)−0.0015 (4)
O40.0331 (6)0.0249 (6)0.0143 (5)0.0018 (5)0.0053 (4)0.0022 (4)
O50.0432 (7)0.0384 (7)0.0231 (5)0.0132 (6)0.0097 (5)0.0106 (5)
O60.0346 (6)0.0261 (6)0.0145 (5)0.0005 (5)0.0035 (4)0.0008 (4)
C10.0237 (8)0.0170 (7)0.0196 (7)−0.0023 (6)0.0025 (6)0.0017 (6)
C20.0261 (8)0.0147 (7)0.0224 (7)−0.0015 (6)0.0041 (6)0.0002 (6)
C30.0297 (8)0.0192 (8)0.0165 (7)−0.0003 (6)0.0055 (6)−0.0001 (6)
C40.0268 (8)0.0164 (7)0.0154 (7)0.0000 (6)0.0032 (6)0.0011 (6)
C50.0244 (7)0.0184 (8)0.0139 (7)0.0004 (6)0.0021 (5)0.0003 (5)
C60.0224 (7)0.0216 (8)0.0142 (6)−0.0019 (6)−0.0020 (5)0.0007 (6)
C70.0254 (7)0.0225 (8)0.0150 (6)−0.0038 (6)0.0035 (5)0.0024 (6)
C80.0298 (7)0.0210 (8)0.0126 (6)0.0001 (6)0.0053 (5)0.0000 (6)
C90.0247 (7)0.0251 (8)0.0149 (7)−0.0012 (6)−0.0003 (6)−0.0013 (6)
C100.0261 (8)0.0172 (7)0.0191 (7)−0.0012 (6)0.0025 (6)0.0003 (6)
C110.0371 (9)0.0417 (10)0.0199 (7)−0.0173 (8)0.0014 (6)0.0049 (7)
C120.0346 (9)0.0399 (10)0.0225 (8)−0.0161 (8)0.0025 (7)0.0027 (7)
C130.0353 (9)0.0924 (17)0.0248 (8)−0.0282 (11)0.0085 (7)0.0021 (10)
C140.0266 (8)0.0233 (8)0.0198 (7)−0.0003 (6)0.0000 (6)0.0008 (6)
C150.0267 (8)0.0270 (8)0.0154 (7)0.0020 (6)0.0029 (6)0.0001 (6)
C160.0230 (7)0.0226 (8)0.0165 (7)−0.0048 (6)−0.0002 (5)0.0024 (6)
C170.0395 (9)0.0320 (10)0.0186 (7)0.0007 (7)0.0070 (6)0.0023 (6)
O1A0.0214 (5)0.0301 (6)0.0166 (5)0.0057 (4)0.0020 (4)0.0010 (4)
O2A0.0241 (6)0.0444 (7)0.0266 (6)0.0095 (5)0.0026 (4)0.0035 (5)
O3A0.0242 (5)0.0290 (6)0.0256 (5)0.0001 (5)0.0086 (4)0.0015 (5)
O4A0.0243 (5)0.0254 (5)0.0145 (4)−0.0015 (4)0.0037 (4)−0.0016 (4)
O5A0.0313 (6)0.0398 (7)0.0234 (5)−0.0079 (5)0.0013 (4)−0.0044 (5)
O6A0.0361 (6)0.0262 (6)0.0147 (5)0.0022 (5)0.0042 (4)−0.0005 (5)
C1A0.0223 (7)0.0138 (7)0.0205 (7)0.0005 (6)0.0045 (5)0.0003 (6)
C2A0.0254 (7)0.0155 (8)0.0214 (7)0.0001 (6)0.0062 (5)−0.0007 (6)
C3A0.0301 (7)0.0187 (7)0.0165 (6)−0.0012 (6)0.0066 (5)0.0000 (6)
C4A0.0284 (7)0.0144 (7)0.0167 (6)0.0002 (6)0.0035 (5)−0.0021 (6)
C5A0.0227 (7)0.0172 (7)0.0169 (6)0.0001 (6)0.0029 (5)0.0004 (6)
C6A0.0193 (7)0.0208 (7)0.0162 (6)0.0012 (6)0.0008 (5)0.0007 (6)
C7A0.0214 (7)0.0223 (8)0.0152 (6)−0.0007 (6)0.0038 (5)−0.0006 (6)
C8A0.0226 (7)0.0225 (8)0.0132 (6)−0.0001 (6)0.0037 (5)0.0007 (5)
C9A0.0236 (7)0.0225 (8)0.0178 (7)0.0016 (6)0.0019 (5)0.0014 (6)
C10A0.0235 (7)0.0140 (7)0.0208 (7)0.0027 (6)0.0052 (5)−0.0004 (6)
C11A0.0233 (7)0.0327 (9)0.0184 (7)0.0047 (7)0.0021 (6)−0.0023 (6)
C12A0.0266 (8)0.0247 (8)0.0220 (7)0.0054 (6)0.0056 (6)−0.0002 (6)
C13A0.0263 (8)0.0437 (11)0.0233 (7)0.0063 (7)0.0080 (6)0.0039 (7)
C14A0.0247 (7)0.0212 (8)0.0224 (7)−0.0011 (6)0.0029 (5)−0.0007 (6)
C15A0.0283 (8)0.0249 (8)0.0157 (6)0.0001 (7)0.0035 (5)−0.0009 (6)
C16A0.0250 (7)0.0257 (8)0.0183 (7)0.0049 (7)0.0013 (6)−0.0024 (6)
C17A0.0450 (9)0.0429 (10)0.0175 (7)−0.0045 (9)0.0059 (6)−0.0025 (7)
O70.0351 (7)0.0283 (7)0.0353 (6)0.0043 (6)0.0031 (5)−0.0038 (5)

Geometric parameters (Å, °)

O1—C121.3568 (19)O1A—C6A1.4612 (16)
O1—C61.4597 (16)O2A—C12A1.1982 (19)
O2—C121.194 (2)O3A—C2A1.2259 (18)
O3—C21.2251 (19)O4A—C16A1.3445 (18)
O4—C161.3496 (18)O4A—C8A1.4586 (16)
O4—C81.4598 (16)O5A—C16A1.207 (2)
O5—C161.196 (2)O6A—C15A1.4224 (16)
O6—C151.4238 (17)O6A—H60A0.85 (2)
O6—H6O0.86 (2)C1A—C10A1.349 (2)
C1—C101.349 (2)C1A—C2A1.4969 (19)
C1—C21.500 (2)C1A—C5A1.5291 (19)
C1—C51.5264 (19)C2A—C3A1.4644 (19)
C2—C31.463 (2)C3A—C4A1.328 (2)
C3—C41.334 (2)C3A—H3A0.9500
C3—H30.9500C4A—C15A1.5041 (19)
C4—C151.500 (2)C4A—C5A1.5271 (18)
C4—C51.5261 (19)C5A—C6A1.5238 (19)
C5—C61.525 (2)C5A—H5A1.0000
C5—H51.0000C6A—C7A1.5337 (18)
C6—C71.5323 (18)C6A—H6A1.0000
C6—H61.0000C7A—C8A1.5182 (19)
C7—C81.5177 (19)C7A—C11A1.538 (2)
C7—C111.527 (2)C7A—H7A1.0000
C7—H71.0000C8A—C9A1.530 (2)
C8—C91.531 (2)C8A—H8A1.0000
C8—H81.0000C9A—C10A1.5206 (19)
C9—C101.516 (2)C9A—H91A0.9900
C9—H9A0.9900C9A—H92A0.9900
C9—H9B0.9900C10A—C14A1.505 (2)
C10—C141.502 (2)C11A—C13A1.513 (2)
C11—C121.520 (2)C11A—C12A1.517 (2)
C11—C131.521 (3)C11A—H11A1.0000
C11—H111.0000C13A—H13D0.9800
C13—H13A0.9800C13A—H13E0.9800
C13—H13B0.9800C13A—H13F0.9800
C13—H13C0.9800C14A—H14D0.9800
C14—H14A0.9800C14A—H14E0.9800
C14—H14B0.9800C14A—H14F0.9800
C14—H14C0.9800C15A—H15C0.9900
C15—H15A0.9900C15A—H15D0.9900
C15—H15B0.9900C16A—C17A1.490 (2)
C16—C171.492 (2)C17A—H17D0.9800
C17—H17A0.9800C17A—H17E0.9800
C17—H17B0.9800C17A—H17F0.9800
C17—H17C0.9800O7—H720.89 (2)
O1A—C12A1.3524 (18)O7—H710.89 (3)
C12—O1—C6109.37 (11)C16A—O4A—C8A117.23 (11)
C16—O4—C8117.62 (11)C15A—O6A—H60A113.1 (14)
C15—O6—H6O107.0 (14)C10A—C1A—C2A125.23 (13)
C10—C1—C2126.38 (13)C10A—C1A—C5A127.71 (13)
C10—C1—C5126.46 (13)C2A—C1A—C5A107.01 (11)
C2—C1—C5107.11 (12)O3A—C2A—C3A124.94 (13)
O3—C2—C3124.87 (13)O3A—C2A—C1A128.43 (13)
O3—C2—C1128.30 (13)C3A—C2A—C1A106.56 (11)
C3—C2—C1106.82 (12)C4A—C3A—C2A111.47 (12)
C4—C3—C2111.18 (13)C4A—C3A—H3A124.3
C4—C3—H3124.4C2A—C3A—H3A124.3
C2—C3—H3124.4C3A—C4A—C15A125.03 (12)
C3—C4—C15125.26 (13)C3A—C4A—C5A111.81 (12)
C3—C4—C5111.98 (13)C15A—C4A—C5A123.08 (12)
C15—C4—C5122.64 (13)C6A—C5A—C4A114.51 (12)
C6—C5—C4114.20 (12)C6A—C5A—C1A112.21 (11)
C6—C5—C1109.34 (11)C4A—C5A—C1A102.67 (11)
C4—C5—C1102.88 (11)C6A—C5A—H5A109.1
C6—C5—H5110.1C4A—C5A—H5A109.1
C4—C5—H5110.1C1A—C5A—H5A109.1
C1—C5—H5110.1O1A—C6A—C5A109.26 (11)
O1—C6—C5111.28 (11)O1A—C6A—C7A103.13 (11)
O1—C6—C7103.45 (11)C5A—C6A—C7A114.76 (12)
C5—C6—C7114.66 (12)O1A—C6A—H6A109.8
O1—C6—H6109.1C5A—C6A—H6A109.8
C5—C6—H6109.1C7A—C6A—H6A109.8
C7—C6—H6109.1C8A—C7A—C6A111.94 (11)
C8—C7—C11117.26 (12)C8A—C7A—C11A118.10 (12)
C8—C7—C6112.75 (12)C6A—C7A—C11A101.45 (11)
C11—C7—C6101.19 (12)C8A—C7A—H7A108.3
C8—C7—H7108.4C6A—C7A—H7A108.3
C11—C7—H7108.4C11A—C7A—H7A108.3
C6—C7—H7108.4O4A—C8A—C7A105.20 (11)
O4—C8—C7106.51 (11)O4A—C8A—C9A107.00 (11)
O4—C8—C9107.23 (11)C7A—C8A—C9A111.62 (12)
C7—C8—C9111.92 (12)O4A—C8A—H8A110.9
O4—C8—H8110.4C7A—C8A—H8A110.9
C7—C8—H8110.4C9A—C8A—H8A110.9
C9—C8—H8110.4C10A—C9A—C8A116.93 (12)
C10—C9—C8114.89 (12)C10A—C9A—H91A108.1
C10—C9—H9A108.5C8A—C9A—H91A108.1
C8—C9—H9A108.5C10A—C9A—H92A108.1
C10—C9—H9B108.5C8A—C9A—H92A108.1
C8—C9—H9B108.5H91A—C9A—H92A107.3
H9A—C9—H9B107.5C1A—C10A—C14A123.41 (13)
C1—C10—C14123.54 (14)C1A—C10A—C9A123.36 (13)
C1—C10—C9122.87 (13)C14A—C10A—C9A113.23 (11)
C14—C10—C9113.58 (12)C13A—C11A—C12A112.04 (13)
C12—C11—C13110.55 (15)C13A—C11A—C7A117.99 (14)
C12—C11—C7101.57 (12)C12A—C11A—C7A101.17 (11)
C13—C11—C7117.49 (16)C13A—C11A—H11A108.4
C12—C11—H11108.9C12A—C11A—H11A108.4
C13—C11—H11108.9C7A—C11A—H11A108.4
C7—C11—H11108.9O2A—C12A—O1A121.52 (13)
O2—C12—O1121.59 (14)O2A—C12A—C11A128.52 (14)
O2—C12—C11128.38 (15)O1A—C12A—C11A109.96 (12)
O1—C12—C11110.02 (13)C11A—C13A—H13D109.5
C11—C13—H13A109.5C11A—C13A—H13E109.5
C11—C13—H13B109.5H13D—C13A—H13E109.5
H13A—C13—H13B109.5C11A—C13A—H13F109.5
C11—C13—H13C109.5H13D—C13A—H13F109.5
H13A—C13—H13C109.5H13E—C13A—H13F109.5
H13B—C13—H13C109.5C10A—C14A—H14D109.5
C10—C14—H14A109.5C10A—C14A—H14E109.5
C10—C14—H14B109.5H14D—C14A—H14E109.5
H14A—C14—H14B109.5C10A—C14A—H14F109.5
C10—C14—H14C109.5H14D—C14A—H14F109.5
H14A—C14—H14C109.5H14E—C14A—H14F109.5
H14B—C14—H14C109.5O6A—C15A—C4A112.23 (12)
O6—C15—C4112.58 (12)O6A—C15A—H15C109.2
O6—C15—H15A109.1C4A—C15A—H15C109.2
C4—C15—H15A109.1O6A—C15A—H15D109.2
O6—C15—H15B109.1C4A—C15A—H15D109.2
C4—C15—H15B109.1H15C—C15A—H15D107.9
H15A—C15—H15B107.8O5A—C16A—O4A123.13 (14)
O5—C16—O4123.69 (13)O5A—C16A—C17A125.78 (14)
O5—C16—C17125.11 (14)O4A—C16A—C17A111.09 (13)
O4—C16—C17111.18 (13)C16A—C17A—H17D109.5
C16—C17—H17A109.5C16A—C17A—H17E109.5
C16—C17—H17B109.5H17D—C17A—H17E109.5
H17A—C17—H17B109.5C16A—C17A—H17F109.5
C16—C17—H17C109.5H17D—C17A—H17F109.5
H17A—C17—H17C109.5H17E—C17A—H17F109.5
H17B—C17—H17C109.5H72—O7—H71106 (2)
C12A—O1A—C6A110.30 (10)
C10—C1—C2—O31.9 (3)C10A—C1A—C2A—O3A11.1 (2)
C5—C1—C2—O3179.40 (15)C5A—C1A—C2A—O3A−171.14 (15)
C10—C1—C2—C3−179.34 (14)C10A—C1A—C2A—C3A−171.77 (15)
C5—C1—C2—C3−1.83 (16)C5A—C1A—C2A—C3A6.04 (16)
O3—C2—C3—C4−179.83 (14)O3A—C2A—C3A—C4A174.67 (15)
C1—C2—C3—C41.35 (17)C1A—C2A—C3A—C4A−2.63 (18)
C2—C3—C4—C15−176.29 (14)C2A—C3A—C4A—C15A−178.68 (14)
C2—C3—C4—C5−0.30 (18)C2A—C3A—C4A—C5A−1.99 (18)
C3—C4—C5—C6117.53 (15)C3A—C4A—C5A—C6A127.48 (14)
C15—C4—C5—C6−66.36 (18)C15A—C4A—C5A—C6A−55.76 (19)
C3—C4—C5—C1−0.85 (16)C3A—C4A—C5A—C1A5.58 (16)
C15—C4—C5—C1175.27 (13)C15A—C4A—C5A—C1A−177.65 (13)
C10—C1—C5—C657.39 (19)C10A—C1A—C5A—C6A47.5 (2)
C2—C1—C5—C6−120.12 (13)C2A—C1A—C5A—C6A−130.28 (12)
C10—C1—C5—C4179.11 (15)C10A—C1A—C5A—C4A170.90 (15)
C2—C1—C5—C41.60 (15)C2A—C1A—C5A—C4A−6.84 (15)
C12—O1—C6—C5149.85 (14)C12A—O1A—C6A—C5A146.40 (12)
C12—O1—C6—C726.24 (17)C12A—O1A—C6A—C7A23.91 (15)
C4—C5—C6—O148.63 (17)C4A—C5A—C6A—O1A52.01 (16)
C1—C5—C6—O1163.25 (11)C1A—C5A—C6A—O1A168.54 (11)
C4—C5—C6—C7165.59 (12)C4A—C5A—C6A—C7A167.24 (12)
C1—C5—C6—C7−79.78 (15)C1A—C5A—C6A—C7A−76.23 (15)
O1—C6—C7—C8−163.07 (12)O1A—C6A—C7A—C8A−162.59 (12)
C5—C6—C7—C875.57 (16)C5A—C6A—C7A—C8A78.68 (16)
O1—C6—C7—C11−36.96 (15)O1A—C6A—C7A—C11A−35.75 (14)
C5—C6—C7—C11−158.32 (13)C5A—C6A—C7A—C11A−154.48 (12)
C16—O4—C8—C7−135.67 (13)C16A—O4A—C8A—C7A−158.28 (12)
C16—O4—C8—C9104.36 (14)C16A—O4A—C8A—C9A82.89 (15)
C11—C7—C8—O456.71 (17)C6A—C7A—C8A—O4A172.54 (11)
C6—C7—C8—O4173.63 (12)C11A—C7A—C8A—O4A55.30 (16)
C11—C7—C8—C9173.60 (13)C6A—C7A—C8A—C9A−71.77 (16)
C6—C7—C8—C9−69.48 (16)C11A—C7A—C8A—C9A170.99 (13)
O4—C8—C9—C10−166.64 (12)O4A—C8A—C9A—C10A−170.91 (12)
C7—C8—C9—C1076.91 (16)C7A—C8A—C9A—C10A74.50 (16)
C2—C1—C10—C14−2.7 (2)C2A—C1A—C10A—C14A4.0 (2)
C5—C1—C10—C14−179.77 (14)C5A—C1A—C10A—C14A−173.31 (14)
C2—C1—C10—C9178.21 (14)C2A—C1A—C10A—C9A−175.04 (13)
C5—C1—C10—C91.2 (2)C5A—C1A—C10A—C9A7.6 (2)
C8—C9—C10—C1−60.8 (2)C8A—C9A—C10A—C1A−59.5 (2)
C8—C9—C10—C14120.02 (14)C8A—C9A—C10A—C14A121.36 (14)
C8—C7—C11—C12156.71 (14)C8A—C7A—C11A—C13A−80.60 (18)
C6—C7—C11—C1233.66 (17)C6A—C7A—C11A—C13A156.70 (14)
C8—C7—C11—C13−82.6 (2)C8A—C7A—C11A—C12A156.85 (13)
C6—C7—C11—C13154.36 (15)C6A—C7A—C11A—C12A34.14 (15)
C6—O1—C12—O2175.77 (18)C6A—O1A—C12A—O2A179.11 (15)
C6—O1—C12—C11−4.1 (2)C6A—O1A—C12A—C11A−1.34 (17)
C13—C11—C12—O235.0 (3)C13A—C11A—C12A—O2A31.4 (2)
C7—C11—C12—O2160.5 (2)C7A—C11A—C12A—O2A157.96 (17)
C13—C11—C12—O1−145.13 (17)C13A—C11A—C12A—O1A−148.13 (14)
C7—C11—C12—O1−19.7 (2)C7A—C11A—C12A—O1A−21.55 (16)
C3—C4—C15—O66.5 (2)C3A—C4A—C15A—O6A12.0 (2)
C5—C4—C15—O6−169.07 (13)C5A—C4A—C15A—O6A−164.31 (13)
C8—O4—C16—O5−1.4 (2)C8A—O4A—C16A—O5A2.9 (2)
C8—O4—C16—C17177.21 (12)C8A—O4A—C16A—C17A−177.12 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6O···O70.86 (2)1.85 (2)2.6750 (17)160 (2)
O6A—H60A···O60.85 (2)1.91 (2)2.7593 (17)174 (2)
O7—H72···O5Ai0.89 (2)1.95 (2)2.8160 (18)165 (2)
O7—H71···O6Aii0.89 (3)1.86 (3)2.7397 (18)176 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2210).

References

  • Bohlmann, F., Jakupovic, J., Abraham, W.-R. & Zdero, C. (1981). Phytochemistry, 20, 2371–2374.
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Campos, V., Silva, M., Watson, W. H. & Nagl, A. (1989). Acta Cryst. C45, 678–680.
  • Djordjevic, I., Tesevic, V., Janackovic, P., Milosavljevic, S. & Vajs, V. (2004). Biochem. Syst. Ecol.32, 209–210.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fischer, N. H., Olivier, E. J. & Fischer, H. D. (1979). Progress in the Chemistry of Organic Natural Products, Vol. 38, edited by W. Hertz, H. Grisebach & G. W. Kirby. Vienna: Springer.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst.41, 96–103. [PMC free article] [PubMed]
  • Parvez, M., Ahmad, V. U., Farooq, U., Jassbi, A. R. & Raziullah, H. S. (2002). Acta Cryst. E58, o324–o325.
  • Ren, Y.-L., Zhou, Y.-W. & Ye, Y.-H. (2003). Struct. Chem.14, 581–585.
  • Ruban, G., Zabel, V., Gensch, K. H. & Smalla, H. (1978). Acta Cryst. B34, 1163–1167.
  • Sarg, T. M., Omar, A. A., Khafagy, S. M., Grenz, M. & Bohlmann, F. (1982). Phytochemistry, 21, 1163.
  • Sheldrick, G. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, Q., Gomez-Barrios, M. L., Hopper, E. L., Hjortso, M. A. & Fischer, N. H. (1995). Phytochemistry, 40, 1659–1665.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography