PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2505.
Published online 2009 September 19. doi:  10.1107/S1600536809036538
PMCID: PMC2970290

1-Ammonio­naphthalene-2-sulfonate

Abstract

In the mol­ecule of the zwitterionic title compound, C10H9NO3S, an intra­molecular N—H(...)O hydrogen bond results in the formation of an almost planar six-membered ring (r.m.s daviation = 0.0150 Å), which is oriented at a dihedral angle of 1.63 (3)° with respect to the naphthalene ring system. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into a two-dimensional network.

Related literature

For general background to the use of amino naphthalene sulfonic acid derivatives as a inter­mediates for the syntheses of azo dyes, see: O’Neil (2001 [triangle]). For related structures, see: Arshad et al. (2008a [triangle],b [triangle]); Genther et al. (2007 [triangle]); Shafiq et al. (2008 [triangle]); Smith et al. (2004 [triangle], 2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2505-scheme1.jpg

Experimental

Crystal data

  • C10H9NO3S
  • M r = 223.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2505-efi1.jpg
  • a = 9.4337 (3) Å
  • b = 10.6359 (4) Å
  • c = 18.6775 (6) Å
  • V = 1874.02 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 296 K
  • 0.29 × 0.21 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.911, T max = 0.943
  • 10742 measured reflections
  • 2326 independent reflections
  • 1763 reflections with I > 2/s(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.107
  • S = 1.03
  • 2326 reflections
  • 145 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809036538/hk2764sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036538/hk2764Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant under the project strengthening the Materials Chemistry Laboratory at GC University, Pakistan.

supplementary crystallographic information

Comment

The title compound is a zwitterion of 1-amino-2-naphthalene sulfonic acid (o-naphthionic acid). Amino naphthalene sulfonic acid derivatives have been used as an intermediate for the syntheses of azo dyes (O'Neil, 2001) and gained importance in complexation (Genther et al., 2007). We purchased 1-amino-2-naphthalene sulfonic acid to use as a precursor for the syntheses of biologically active thiazine related heterocycles (Arshad et al., 2008a, b; Shafiq et al., 2008). The crystal structures of 5-aminonaphthalene-1-sulfonic acid (Genther et al., 2007; Smith et al., 2004) and 8-ammonionaphthalene-2-sulfonate monohydrate (Smith et al., 2009) have already been published, which are position isomers of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C4/C9/C10) and B (C5-C10) are, of course, planar. The dihedral angles between them are A/B = 1.94 (3)°. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a planar six-membered ring C (S1/O2/N1/C1/C2/H2N), which is oriented with respect to the other rings at dihedral angles of A/C = 0.74 (3) and B/C = 2.59 (3) °. So, the rings are almost coplanar.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound was purchased from Sigma-Aldrich and recrystalized in methanol for X-ray analysis.

Refinement

Atoms H1N, H2N and H3N (for NH3) are located in a difference Fourier map and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically with C-H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C10H9NO3SF(000) = 928
Mr = 223.24Dx = 1.582 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2779 reflections
a = 9.4337 (3) Åθ = 3.1–27.5°
b = 10.6359 (4) ŵ = 0.33 mm1
c = 18.6775 (6) ÅT = 296 K
V = 1874.02 (11) Å3Hexagonal, dark brown
Z = 80.29 × 0.21 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer2326 independent reflections
Radiation source: fine-focus sealed tube1763 reflections with I > 2/s(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −12→12
Tmin = 0.911, Tmax = 0.943k = −14→8
10742 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0546P)2 + 0.6846P] where P = (Fo2 + 2Fc2)/3
2326 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.48056 (5)0.72906 (4)1.02833 (2)0.02659 (15)
O10.62861 (15)0.69891 (13)1.04059 (8)0.0375 (4)
O20.38420 (16)0.65642 (14)1.07238 (7)0.0401 (4)
O30.45788 (15)0.86350 (13)1.03188 (7)0.0369 (3)
N10.25407 (18)0.53879 (16)0.96588 (9)0.0282 (3)
H1N0.270 (2)0.459 (2)0.9642 (10)0.034*
H2N0.273 (2)0.565 (2)1.0112 (12)0.034*
H3N0.166 (3)0.558 (2)0.9579 (11)0.034*
C10.34654 (18)0.60250 (16)0.91466 (9)0.0248 (4)
C20.44755 (18)0.68602 (17)0.93750 (9)0.0253 (4)
C30.5354 (2)0.7463 (2)0.88661 (11)0.0346 (4)
H30.60540.80170.90180.041*
C40.5178 (2)0.7236 (2)0.81550 (11)0.0373 (5)
H40.57560.76460.78260.045*
C50.3947 (2)0.6159 (2)0.71689 (11)0.0411 (5)
H50.44950.65900.68360.049*
C60.2971 (3)0.5317 (2)0.69409 (12)0.0455 (6)
H60.28520.51750.64530.055*
C70.2144 (3)0.4659 (2)0.74345 (12)0.0457 (5)
H70.14860.40740.72720.055*
C80.2287 (2)0.48638 (19)0.81515 (11)0.0373 (5)
H80.17270.44180.84730.045*
C90.32805 (19)0.57488 (17)0.84084 (10)0.0277 (4)
C100.4142 (2)0.63928 (18)0.79073 (10)0.0317 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0286 (2)0.0233 (2)0.0278 (2)−0.00027 (18)−0.00188 (17)0.00027 (17)
O10.0327 (7)0.0331 (7)0.0467 (8)0.0037 (6)−0.0106 (6)−0.0016 (6)
O20.0467 (9)0.0439 (8)0.0297 (7)−0.0125 (7)0.0029 (6)0.0025 (6)
O30.0451 (8)0.0254 (7)0.0402 (8)0.0056 (6)−0.0033 (6)−0.0043 (6)
N10.0271 (8)0.0231 (8)0.0343 (9)−0.0033 (7)0.0033 (7)0.0014 (7)
C10.0224 (8)0.0216 (8)0.0303 (9)0.0027 (7)0.0034 (7)0.0015 (7)
C20.0252 (8)0.0231 (8)0.0277 (9)0.0012 (7)0.0008 (7)0.0000 (7)
C30.0301 (9)0.0379 (11)0.0357 (10)−0.0108 (8)0.0024 (8)0.0019 (8)
C40.0364 (10)0.0415 (12)0.0339 (10)−0.0053 (9)0.0087 (8)0.0057 (9)
C50.0490 (12)0.0454 (12)0.0290 (10)0.0119 (11)0.0036 (9)0.0006 (9)
C60.0558 (13)0.0454 (13)0.0353 (11)0.0151 (11)−0.0103 (10)−0.0111 (9)
C70.0502 (13)0.0377 (12)0.0493 (13)0.0010 (10)−0.0143 (10)−0.0119 (10)
C80.0360 (11)0.0323 (10)0.0435 (11)−0.0026 (9)−0.0048 (8)−0.0044 (9)
C90.0259 (8)0.0244 (9)0.0328 (10)0.0051 (7)−0.0016 (7)−0.0023 (7)
C100.0322 (9)0.0323 (10)0.0305 (10)0.0055 (8)0.0005 (7)0.0004 (8)

Geometric parameters (Å, °)

S1—O31.4473 (14)C4—C101.405 (3)
S1—O21.4491 (14)C4—H40.9300
S1—O11.4513 (14)C5—C61.353 (3)
S1—C21.7845 (18)C5—C101.413 (3)
N1—C11.461 (2)C5—H50.9300
N1—H1N0.86 (2)C6—C71.395 (3)
N1—H2N0.91 (2)C6—H60.9300
N1—H3N0.86 (2)C7—C81.363 (3)
C1—C21.371 (2)C7—H70.9300
C1—C91.420 (2)C8—C91.412 (3)
C2—C31.415 (3)C8—H80.9300
C3—C41.360 (3)C9—C101.416 (3)
C3—H30.9300
O3—S1—O2114.07 (9)C3—C4—C10121.32 (18)
O3—S1—O1110.69 (9)C3—C4—H4119.3
O2—S1—O1113.34 (9)C10—C4—H4119.3
O3—S1—C2105.74 (8)C6—C5—C10120.8 (2)
O2—S1—C2107.07 (8)C6—C5—H5119.6
O1—S1—C2105.15 (8)C10—C5—H5119.6
C1—N1—H1N109.3 (14)C5—C6—C7120.3 (2)
C1—N1—H2N110.2 (14)C5—C6—H6119.9
H1N—N1—H2N107.7 (19)C7—C6—H6119.9
C1—N1—H3N110.5 (14)C8—C7—C6120.9 (2)
H1N—N1—H3N113 (2)C8—C7—H7119.5
H2N—N1—H3N106.3 (19)C6—C7—H7119.5
C2—C1—C9121.43 (16)C7—C8—C9120.4 (2)
C2—C1—N1120.77 (16)C7—C8—H8119.8
C9—C1—N1117.79 (16)C9—C8—H8119.8
C1—C2—C3119.45 (17)C8—C9—C10118.59 (17)
C1—C2—S1125.70 (14)C8—C9—C1123.31 (18)
C3—C2—S1114.85 (14)C10—C9—C1118.10 (16)
C4—C3—C2120.28 (18)C4—C10—C5121.61 (19)
C4—C3—H3119.9C4—C10—C9119.36 (17)
C2—C3—H3119.9C5—C10—C9119.03 (19)
C9—C1—C2—C30.1 (3)C6—C7—C8—C90.0 (3)
N1—C1—C2—C3−179.95 (17)C7—C8—C9—C10−1.4 (3)
C9—C1—C2—S1179.69 (14)C7—C8—C9—C1178.78 (19)
N1—C1—C2—S1−0.3 (3)C2—C1—C9—C8177.77 (18)
O3—S1—C2—C1−120.22 (16)N1—C1—C9—C8−2.2 (3)
O2—S1—C2—C11.78 (19)C2—C1—C9—C10−2.0 (3)
O1—S1—C2—C1122.61 (16)N1—C1—C9—C10178.00 (16)
O3—S1—C2—C359.42 (16)C3—C4—C10—C5179.5 (2)
O2—S1—C2—C3−178.58 (14)C3—C4—C10—C9−1.2 (3)
O1—S1—C2—C3−57.75 (16)C6—C5—C10—C4178.0 (2)
C1—C2—C3—C41.4 (3)C6—C5—C10—C9−1.2 (3)
S1—C2—C3—C4−178.30 (17)C8—C9—C10—C4−177.23 (18)
C2—C3—C4—C10−0.8 (3)C1—C9—C10—C42.6 (3)
C10—C5—C6—C7−0.3 (3)C8—C9—C10—C52.0 (3)
C5—C6—C7—C80.9 (3)C1—C9—C10—C5−178.18 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)1.94 (2)2.762 (2)160.4 (18)
N1—H2N···O20.91 (2)1.83 (2)2.651 (2)149.0 (19)
N1—H3N···O3ii0.87 (3)2.14 (3)2.982 (2)162 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2764).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Arshad, M. N., Khan, I. U., Ahmad, S., Shafiq, M. & Stoeckli-Evans, H. (2008a). Acta Cryst. E64, m994. [PMC free article] [PubMed]
  • Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o2045. [PMC free article] [PubMed]
  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Genther, D. J., Squattrito, P. J., Kirschbaum, K., Yearley, E. J. & Pinkerton, A. A. (2007). Acta Cryst. C63, m604–m609. [PubMed]
  • O’Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 410. Whitehouse Station, New Jersey: Merck & Co.
  • Shafiq, M., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o389. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D. & Young, D. J. (2009). Acta Cryst. E65, o2110. [PMC free article] [PubMed]
  • Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2004). Acta Cryst. E60, o2014–o2016.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography