PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1237.
Published online 2009 September 26. doi:  10.1107/S1600536809037520
PMCID: PMC2970287

catena-Poly[[pyridinecopper(II)]-μ-N-[(2-oxido-1-naphth­yl)methyl­ene]glycinato]

Abstract

In the title compound, [Cu(C13H9NO3)(C5H5N)], the CuII atom is coordinated in a distorted square-pyramidal geometry, with two N and two O atoms in the basal positions and one O atom in the apical position. The apical Cu—O bond [2.3520 (16) Å] is much longer than the basal Cu—O and Cu—N bonds [1.9139 (14)–2.0136 (17) Å]. The carboxyl­ate group bridges CuII atoms, forming a zigzag chain along the a axis.

Related literature

For related structures, see: Basu Baul et al. (2007 [triangle]); Parekh et al. (2006 [triangle]); Usman et al. (2003 [triangle]); Vigato & Tamburini (2004 [triangle]); Casella & Gullotti (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1237-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H9NO3)(C5H5N)]
  • M r = 369.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1237-efi1.jpg
  • a = 14.508 (4) Å
  • b = 11.747 (3) Å
  • c = 9.407 (3) Å
  • β = 101.805 (3)°
  • V = 1569.5 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.41 mm−1
  • T = 296 K
  • 0.30 × 0.30 × 0.25 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.662, T max = 0.703
  • 7938 measured reflections
  • 2770 independent reflections
  • 2460 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.069
  • S = 1.04
  • 2770 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037520/is2450sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037520/is2450Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the National Sciences Foundation of China (No. 20877036) and the Top-class Foundation of Pingdingshan University (No. 2008010 and 2009001).

supplementary crystallographic information

Comment

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Casella & Gullotti, 1983). A few structural studies have been performed on Schiff base complexes derived from 2-hydroxyacetophenone and animo acids (Usman et al., 2003; Basu Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title CuII complex, (I).

The structure consists of a square pyramidal CuII complex (Fig. 1 and Table 1). The four basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the pyridine ligand. The fifth position is occupied by one O atom from the adjacent tridentate Schiff base ligand.

The crystal structure is stabilized by the long-distance coordination of Cu1 and O3 (Fig. 2 and Table 2). The distance of Cu1—O3 bonds is 2.3520 (16) Å, and the distance of the two Cu(II) atoms is 6.013 Å.

Experimental

The title compound was synthesized as described in the literature. To glycine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol and 5 ml of water was added 2-hydroxy-1-naphthaldehyde (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to Cu(II) nitrate hexahydrate (1.00 mmol) and pyridine (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2.0 h at 333 K. The brown solution was filtered and left for several days, brown crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 or 0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
A view of the crystal packing along the c axis.

Crystal data

[Cu(C13H9NO3)(C5H5N)]F(000) = 756
Mr = 369.85Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4385 reflections
a = 14.508 (4) Åθ = 2.3–27.5°
b = 11.747 (3) ŵ = 1.41 mm1
c = 9.407 (3) ÅT = 296 K
β = 101.805 (3)°Block, brown
V = 1569.5 (8) Å30.30 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2770 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→17
Tmin = 0.662, Tmax = 0.703k = −13→13
7938 measured reflectionsl = −10→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.069w = 1/[σ2(Fo2) + (0.0336P)2 + 0.6894P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2770 reflectionsΔρmax = 0.26 e Å3
218 parametersΔρmin = −0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.754799 (16)0.40947 (2)0.14007 (3)0.03547 (11)
C10.58094 (14)0.47447 (17)0.2269 (2)0.0363 (5)
C20.53738 (17)0.5434 (2)0.3195 (3)0.0499 (6)
H20.57340.59670.37970.060*
C30.44485 (18)0.5327 (2)0.3216 (3)0.0555 (6)
H30.41940.57740.38550.067*
C40.38571 (16)0.4559 (2)0.2299 (3)0.0468 (6)
C50.28967 (18)0.4444 (3)0.2361 (3)0.0638 (7)
H50.26570.48640.30410.077*
C60.23200 (19)0.3736 (3)0.1457 (4)0.0716 (8)
H60.16930.36590.15250.086*
C70.26763 (17)0.3122 (2)0.0417 (3)0.0645 (7)
H70.22790.2647−0.02240.077*
C80.36069 (15)0.3211 (2)0.0331 (3)0.0494 (6)
H80.38270.2801−0.03780.059*
C90.42367 (15)0.39105 (17)0.1292 (2)0.0389 (5)
C100.52409 (14)0.39925 (16)0.1297 (2)0.0335 (4)
C110.56303 (14)0.33185 (17)0.0311 (2)0.0354 (5)
H110.52140.2884−0.03570.042*
C120.68024 (15)0.25177 (19)−0.0810 (2)0.0436 (5)
H12A0.63760.2612−0.17420.052*
H12B0.67750.1729−0.05150.052*
C130.77987 (14)0.28074 (17)−0.0955 (2)0.0358 (5)
C140.93488 (18)0.5307 (3)0.1688 (3)0.0643 (7)
H140.93530.49590.08020.077*
C151.0076 (2)0.6014 (3)0.2262 (4)0.0809 (10)
H151.05600.61460.17680.097*
C161.00878 (19)0.6523 (3)0.3557 (4)0.0771 (9)
H161.05720.70170.39570.093*
C170.9372 (2)0.6294 (3)0.4269 (4)0.0774 (9)
H170.93710.66130.51730.093*
C180.86512 (17)0.5579 (2)0.3615 (3)0.0601 (7)
H180.81610.54360.40900.072*
N10.65107 (11)0.32565 (14)0.02613 (18)0.0353 (4)
N20.86312 (12)0.50919 (16)0.2340 (2)0.0424 (4)
O10.67150 (10)0.48556 (12)0.24244 (16)0.0414 (3)
O20.82497 (9)0.34878 (13)−0.00179 (15)0.0400 (3)
O30.81199 (11)0.23568 (14)−0.19287 (17)0.0514 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03099 (16)0.03984 (17)0.03662 (17)−0.00672 (10)0.00934 (11)−0.00578 (11)
C10.0389 (12)0.0339 (11)0.0372 (11)0.0025 (9)0.0102 (9)0.0061 (9)
C20.0500 (14)0.0490 (14)0.0523 (14)0.0021 (11)0.0147 (11)−0.0094 (11)
C30.0544 (15)0.0599 (15)0.0579 (16)0.0146 (12)0.0247 (12)−0.0053 (13)
C40.0391 (12)0.0486 (13)0.0557 (14)0.0110 (11)0.0164 (11)0.0125 (11)
C50.0460 (15)0.0705 (17)0.081 (2)0.0161 (14)0.0276 (14)0.0127 (15)
C60.0327 (13)0.0795 (19)0.106 (2)0.0041 (14)0.0221 (15)0.0161 (18)
C70.0344 (13)0.0645 (16)0.092 (2)−0.0042 (12)0.0073 (13)0.0084 (15)
C80.0360 (12)0.0474 (13)0.0645 (16)0.0012 (10)0.0095 (11)0.0067 (12)
C90.0339 (11)0.0350 (11)0.0482 (13)0.0049 (9)0.0094 (9)0.0136 (9)
C100.0315 (11)0.0326 (10)0.0367 (11)0.0026 (8)0.0080 (8)0.0072 (8)
C110.0324 (11)0.0352 (11)0.0375 (11)−0.0038 (9)0.0045 (8)0.0014 (9)
C120.0375 (12)0.0467 (13)0.0483 (13)−0.0069 (10)0.0130 (9)−0.0136 (10)
C130.0360 (11)0.0367 (11)0.0354 (11)−0.0006 (9)0.0089 (9)0.0009 (9)
C140.0480 (15)0.083 (2)0.0647 (17)−0.0268 (14)0.0184 (13)−0.0101 (15)
C150.0530 (17)0.098 (2)0.093 (2)−0.0358 (16)0.0169 (16)−0.0089 (19)
C160.0423 (16)0.0655 (19)0.114 (3)−0.0164 (14)−0.0072 (16)−0.0147 (18)
C170.0533 (17)0.084 (2)0.087 (2)−0.0036 (15)−0.0049 (15)−0.0427 (18)
C180.0399 (14)0.0733 (17)0.0659 (17)−0.0066 (12)0.0079 (12)−0.0227 (14)
N10.0324 (9)0.0383 (9)0.0365 (9)−0.0034 (7)0.0102 (7)−0.0055 (7)
N20.0355 (10)0.0449 (10)0.0458 (11)−0.0082 (8)0.0059 (8)−0.0046 (8)
O10.0363 (8)0.0436 (8)0.0452 (8)−0.0046 (6)0.0106 (6)−0.0091 (7)
O20.0334 (8)0.0491 (9)0.0390 (8)−0.0071 (7)0.0107 (6)−0.0067 (7)
O30.0468 (9)0.0618 (10)0.0512 (9)−0.0097 (8)0.0233 (7)−0.0191 (8)

Geometric parameters (Å, °)

Cu1—O11.9139 (14)C9—C101.459 (3)
Cu1—N11.9296 (17)C10—C111.422 (3)
Cu1—O21.9702 (14)C11—N11.290 (3)
Cu1—N22.0136 (17)C11—H110.9300
Cu1—O3i2.3520 (16)C12—N11.457 (3)
C1—O11.298 (2)C12—C131.518 (3)
C1—C101.410 (3)C12—H12A0.9700
C1—C21.428 (3)C12—H12B0.9700
C2—C31.352 (3)C13—O31.229 (2)
C2—H20.9300C13—O21.268 (2)
C3—C41.411 (4)C14—N21.336 (3)
C3—H30.9300C14—C151.365 (4)
C4—C91.412 (3)C14—H140.9300
C4—C51.413 (3)C15—C161.354 (5)
C5—C61.350 (4)C15—H150.9300
C5—H50.9300C16—C171.373 (4)
C6—C71.397 (4)C16—H160.9300
C6—H60.9300C17—C181.383 (4)
C7—C81.373 (3)C17—H170.9300
C7—H70.9300C18—N21.324 (3)
C8—C91.411 (3)C18—H180.9300
C8—H80.9300O3—Cu1ii2.3520 (16)
O1—Cu1—N190.96 (7)C1—C10—C9119.63 (19)
O1—Cu1—O2167.63 (6)C11—C10—C9119.40 (19)
N1—Cu1—O283.77 (6)N1—C11—C10125.71 (19)
O1—Cu1—N291.38 (7)N1—C11—H11117.1
N1—Cu1—N2172.14 (7)C10—C11—H11117.1
O2—Cu1—N292.44 (7)N1—C12—C13110.20 (17)
O1—Cu1—O3i100.09 (6)N1—C12—H12A109.6
N1—Cu1—O3i97.45 (7)C13—C12—H12A109.6
O2—Cu1—O3i91.71 (6)N1—C12—H12B109.6
N2—Cu1—O3i89.52 (7)C13—C12—H12B109.6
O1—C1—C10125.43 (19)H12A—C12—H12B108.1
O1—C1—C2116.02 (19)O3—C13—O2124.69 (19)
C10—C1—C2118.5 (2)O3—C13—C12118.91 (19)
C3—C2—C1121.4 (2)O2—C13—C12116.38 (17)
C3—C2—H2119.3N2—C14—C15123.1 (3)
C1—C2—H2119.3N2—C14—H14118.5
C2—C3—C4122.1 (2)C15—C14—H14118.5
C2—C3—H3118.9C16—C15—C14119.4 (3)
C4—C3—H3118.9C16—C15—H15120.3
C3—C4—C9118.9 (2)C14—C15—H15120.3
C3—C4—C5121.2 (2)C15—C16—C17118.8 (3)
C9—C4—C5119.9 (2)C15—C16—H16120.6
C6—C5—C4121.5 (3)C17—C16—H16120.6
C6—C5—H5119.3C16—C17—C18118.7 (3)
C4—C5—H5119.3C16—C17—H17120.6
C5—C6—C7119.3 (2)C18—C17—H17120.6
C5—C6—H6120.4N2—C18—C17122.7 (3)
C7—C6—H6120.4N2—C18—H18118.7
C8—C7—C6120.8 (3)C17—C18—H18118.7
C8—C7—H7119.6C11—N1—C12119.25 (17)
C6—C7—H7119.6C11—N1—Cu1128.09 (14)
C7—C8—C9121.5 (2)C12—N1—Cu1112.60 (13)
C7—C8—H8119.3C18—N2—C14117.3 (2)
C9—C8—H8119.3C18—N2—Cu1121.30 (16)
C8—C9—C4117.0 (2)C14—N2—Cu1121.35 (17)
C8—C9—C10123.8 (2)C1—O1—Cu1128.69 (13)
C4—C9—C10119.2 (2)C13—O2—Cu1115.74 (12)
C1—C10—C11120.96 (18)C13—O3—Cu1ii132.41 (14)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2450).

References

  • Basu Baul, T. S., Masharing C., Ruisi, G., Jirásko, R., HolApek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem.692, 4849–4862.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Casella, L. & Gullotti, M. (1983). Inorg. Chem.22, 2259–2266.
  • Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem.35, 67–72.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.
  • Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev.248, 1717–2128.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography